
www.manaraa.com

www.manaraa.com

SOFTWARE
ARCHITECTURES
AND COMPONENT

TECHNOLOGY

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

www.manaraa.com

SOFTWARE
ARCHITECTURES
AND COMPONENT

TECHNOLOGY

edited by

Mehmet Akşit
University ofTwente, The Netherlands

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

ISBN 978-1-4613-5286-0 ISBN 978-1-4615-0883-0 (eBook)
DOI 10.1007/978-1-4615-0883-0

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

The image used on the front cover was obtained from IMSI's MasterClips(R) and
MasterPhotosTM Premium Image Collection, 1895 Francisco Blvd. East, San
Rafael, CA 94901-5506, USA

Copyright © 2002 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 2002
Softcover reprint ofthe hardcover Ist edition 2002

AII rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording, or
otherwise, without the prior written permission of the publisher,
Springer Science+Business Media, LLC

Printed an acid-free pa per.

www.manaraa.com

Contents

CONTRIBUTORS .. vii

ACKNOWLEDGEMENTS .. ix

PREFACE ... xi

PART 1
INTRODUCTION AND OVERVIEW ... 1

1. CLASSIFYING AND EVALUATING ARCHITECTURE
DESIGN METHODS ... 3
Bedir Tekinerdogan and Mehmet Ak§it

2. GUIDELINESS FOR IDENTIFYING OBSTACLES WHEN
COMPOSING DISTRIBUTED SYSTEMS FROM
COMPONENTS ... 29
Mehmet Ak§it and Lodewijk Bergmans

PART 2
ARCHITECTURES ... 57

3. COMPONENT-BASED ARCHITECTING FOR
DISTRIBUTED REAL-TIME SYSTEMS .. 59
Dieter K. Hammer

www.manaraa.com

VI SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

4. COMPONENT ORIENTED PLATFORM ARCHITECTING
FOR SOFTWARE INTENSIVE PRODUCT FAMILIES 99
Henk Obbink, Rob van Ommering, Jan Gerben Wijnstra and Pierre

America

5. SYNTHESIS-BASED SOFTWARE ARCHITECTURE
DESIGN .. 143
Bedir Tekinerdogan and Mehmet Alqit

6. LOOSELY COUPLED COMPONENTS .. 175
Patrick Th. Eugster, Rachid Guerraoui and Joe Sventek

7. CO-EVOLUTION OF OBJECT-ORIENTED SOFTWARE
DESIGN AND IMPLEMENTATION ... 207
Theo D 'Hondt, Kris De Voider, Kim Mens and Roel Wuyts

8. DERIVING DESIGN ALTERNATIVES BASED ON QUALITY
FACTORS .. 225
Mehmet Ak~it and Bedir Tekinerdogan

PART 3
COMPONENTS .. , , , 259

9. APPLICATIONS = COMPONENTS + SCRIPTS 261
Franz Achermann and Oscar Nierstrasz

10.MULTI-DIMENSIONAL SEPARATION OF CONCERNS
AND THE HYPERSPACE APPROACH .. 293
Harold Ossher and Peri Tarr

l1.COMPONENT INTEGRATION WITH PLUGGABLE
COMPOSITE ADAPTERS .. 325
Mira Mezini, Linda Seiter and Karl Lieberherr

12.ASPECT COMPOSITION USING COMPOSITION FILTERS ... 357
Lodewijk Bergmans, Mehmet Ak~it and Bedir Tekinerdogan

INDEX ... oo.oo .. 383

www.manaraa.com

Contributors

The following authors contributed to this book:
Franz Achermann
Mehmet Ak;;it
Pierre America
Lodewijk Bergmans
Theo D'Hondt
Patrick Th. Eugster
Rachid Guerraoui
Dieter K. Hammer
Kim Mens
Mira Mezini
Oscar Nierstrasz
Henk Obbink
Rob van Ommering
Harold Ossher
Linda Seiter
Joe Sventek
Peri Tarr
Bedir Tekinerdogan
Kris De VoIder
Jan Gerben Wijnstra
Roel Wuyts
Karl Lieberherr

www.manaraa.com

Acknowledgements

Many people contributed towards the creation of this volume. First of all,
I would like to express my deepest appreciation to the authors of the chapters
and the referees for providing this excellent material. Secondly, I would like
to thank the members of the TRESE group, and in particular Lodewijk
Bergmans, Klaas van den Berg, Pim van den Broek, Maurice Glandrup,
Arend Rensink and Richard van de Stadt for helping me in editing and
formatting the volume. Last but not least, without the endless support of
Lance Wobus and Sharon Palleschi from Kluwer, finishing this volume
would not have been possible.

This work has been partially supported and funded by various
organizations including Siemens-Nixdorf Software Center, the Dutch
Ministry of Economical affairs under the SENTER program, the Dutch
Organization for Scientific Research (NWO, 'Inconsistency management in
the requirements analysis phase' project), the AMIDST project, and by the
1ST Project 1999-14191 EASYCOMP.

Mehmet Ak~it

www.manaraa.com

Preface

Software architectures have gained a wide popularity in the last decade
and they are generally considered to playa fundamental role in coping with
the inherent difficulties of the development of large-scale and complex
software systems. Software architectures include the early design decisions
and embody the overall structure that impacts the quality of the whole
system. A common assumption is that architecture design should support the
required software system qualities such as robustness, adaptability,
reusability and maintainability.

Component-oriented programming enables software engineers to
implement complex applications from a set of pre-defined components.
Component-oriented programming is becoming more and more popular
probably because it offers a compromise between custom-made software,
i.e., software that is developed from scratch and standard software, i.e.,
prefabricated complete solutions that can only be parameterized to get close
enough to what is needed in a particular scenario.

This book collects excellent chapters on software architectures and
component technologies from well-known authors, who do not only explain
the advantages but also present the shortcomings of the current approaches
and introduce novel solutions to overcome the shortcomings.

The first two chapters are introductory of nature; they give definitions,
compare various approaches and identifY the obstacles that designers may
experience while applying architecture and component technologies. The
first chapter provides a classification and evaluation of software architecture
design methods. For this, contemporary definitions on software architectures
are analyzed and a general definition of software architecture is introduced.
The problems of various architecture design methods are described. The

www.manaraa.com

xii SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

second chapter provides a set of guidelines to identifY the obstacles that
software engineers may experience while designing distributed systems
using the current component technology. To this aim, the computer science
domain is divided into several sub-domains, and each sub-domain is
described using its important aspects. Further, each aspect is analyzed with
respect to the current component technology. This analysis helps software
engineers to identifY the possible obstacles for each aspect of a sub-domain.
These two chapters conclude with references to the relevant research
activities that are presented in this book.

The chapters 3 to 8 present various architecture design approaches with a
strong emphasis on component technology. The chapters 3, 4 and 5 present
architecture-design methods exemplified with industrial applications.

In chapter 3 written by Dieter Hammer, first overview of architecture
design dimensions and views are presented. The second part of this chapter
summarizes the requirements that components must fulfill in order to be
composable in the context of dependable distributed real-time systems.
Finally, a method for constructing the collective behavior of a set of
components and achieving composability is sketched and demonstrated by
means of an example.

Chapter 4, written by Henk Obbink, Rob van Ommering, Jan Gerben
Wijnstra and Pierre America, explains how component oriented product
family architectures provide a promising architecture development
paradigm. This paradigm solves the inherent dilemma of the need for careful
engineering versus rapid realisation of a large variety of product instances.
The approach is illustrated using examples from the medical and the
consumer domain.

In chapter 5, Bedir Tekinerdogan and Mehmet Ak~it present a synthesis­
based architecture design approach (Synbad). In this method, the client's
perspective is abstracted to derive the technical problems. The technical
problems define the scope of the solution domains from which the
architectural abstractions are derived. The approach is illustrated for the
design of an atomic transaction architecture for a real industrial project.

In chapter 6, Patrick Eugster, Rachid Guerraoui and Joe Sventek present
the so-called Distributed Asynchronous Collections (DACs) as a set of stable
and useful component abstractions with the context of distributed system
architecture. By viewing the elements of our DACs as events, these
collections can be seen as programming abstractions for asynchronous
distributed interaction, enabling the loose coupling of components.

The chapters 7 and 8 can be considered as a bridge between architecture
specifications and software components.

In chapter 7, Theo D'Hondt, Kris De VoIder, Kim Mens and Roel Wuyts,
present a number of experiments based on logic meta-programming to

www.manaraa.com

PREFACE xiii

augment an implementation with enforceable design concerns, including
architectural concerns. This approach can be used to codify design
information as constraints or even as a process for code generation.

In chapter 8, Mehmet Ak~it and Bedir Tekinerdogan introduce a
technique to depict, compare and select among the design alternatives, based
on their adaptability and time performance factors. This technique is
formally specified and implemented by a number of tools.

The chapters 9 to 12 tackle the problems of current component-based
approaches. Each chapter presents a new approach along this line.

Chapter 9, written by Franz Achermann and Oscar Nierstrasz, introduces
the programming language Piccola, which is suitable for composing
applications from software components. It has a small syntax and a minimal
set of features needed for specifying different styles of software
composition. Through a series of examples, this chapter illustrates how
Piccola suffice to express a variety of compositional abstractions and styles.

Chapter 10, written by Harold Ossher and Peri Tarr, claims that most
languages and modularization approaches support only one "dominant" kind
of modularization. Once a system has been decomposed, extensive
refactoring and reengineering are needed to remodularize it. This chapter
presents hyperspaces and Hyper/FM as a particular approach to providing
multi-dimensional separation of concerns.

Chapter 11, written by Mira Mezini, Linda Seiter and Karl Lieberherr,
addresses object-oriented component integration issues. The chapter argues
that traditional framework customization techniques are inappropriate for
component-based programming since they lack support for non-invasive,
encapsulated, dynamic customization. The chapter proposes a language
construct, called a pluggable composite adapter for expressing component
gluing for better better modularity, flexible extensibility, and improved
maintenance and understandability.

Chapter 12, written by Lodewijk Bergmans, Mehmet Ak~it and Bedir
Tekinerdogan, first discusses a number of software reuse and extension
problems in current object-oriented languages. A number of examples
illustrate that both inheritance and aggregation mechanisms cannot
adequately express certain aspects of evolving software. As a solution to
these problems, the composition filters model is introduced. This chapter
also evaluates the effectiveness of various language mechanisms in coping
with evolving software as in the presented change case.

www.manaraa.com

PART 1

INTRODUCTION AND OVERVIEW

www.manaraa.com

Chapter 1

CLASSIFYING AND
EVALUATING ARCHITECTURE
DESIGN METHODS

Bedir Tekinerdogan and Mehmet Ak~it
TRESE Group, Department of Computer Science, University of Twente, postbox 217, 7500
AE, Enschede, The Netherlands. email: {bedir.aksit}@cs.utwente.nl.
www: http://trese.cs.utwente.nl

Keywords: Software architecture, classification of architecture design methods, problems
in designing architectures

Abstract: The concept of software architecture has gained a wide popularity and is
generally considered to play a fundamental role in coping with the inherent
difficulties of the development of large-scale and complex software systems.
This chapter provides a classification and evaluation of existing software
architecture design methods. For this, contemporary definitions on software
architectures are analyzed and a general definition of software architecture is
introduced. Further, a meta-model for architecture design methods is
presented, which is used as a basis for comparing various architecture design
approaches. The problems of each architecture design method are described
and the corresponding conclusions are given.

1. INTRODUCTION

Software architectures have gained a wide popularity in the last decade
and they are generally considered to playa fundamental role in coping with
the inherent difficulties of the development of large-scale and complex
software systems [6]. Software architectures include the early design
decisions and embody the overall structure that impacts the quality of the
whole system. A common assumption is that architecture design should

www.manaraa.com

4 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

support the required software system qualities such as robustness,
adaptability, reusability and maintainability [1].

For ensuring the quality factors it is generally agreed that identifying the
fundamental abstractions for architecture design is necessary. We maintain
that the existing architecture design approaches have several difficulties in
deriving the right architectural abstractions. To analyze, evaluate and
identify the basic problems we will present a survey of the state-of-the-art
architecture design approaches and describe the obstacles of each approach.

The chapter is organized as follows. Section 2 provides a short
background on software architectures in which existing definitions including
our own definition of software architecture is given. In section 3 a meta­
model for software architecture design approaches is presented. This meta­
model serves as a basis for identifying the problems in our evaluation of
architecture design approaches. In section 4 a classification, analysis and
evaluation of the contemporary architectural approaches is presented.
Section 5 refers to the related chapters in this volume. Finally, section 6
presents the conclusions and evaluations.

2. NOTION OF ARCHITECTURE

In this section we focus on the meaning of software architecture by
analyzing the prevailing definitions as described in section 2.1. In section 2.2
we provide our own definition that we consider as general and which covers
the existing definitions.

2.1 Definitions

Software architectures are high-level design representations and facilitate
the communication between different stakeholders, enable the effective
partitioning and parallel development of the software system, provide a
means for directing and evaluation, and finally provide opportunities for
reuse [6].

The term architecture is not new and has been used for centuries to
denote the physical structure of an artifact [39]. The software engineering
community has adopted the term to denote the gross-level structure of
software-intensive systems. The importance of structure was already
acknowledged early in the history of software engineering. The first software
programs were written for numerical calculations using programming
languages that supported mathematical expressions and later algorithms and
abstract data types. Programs written at that time served mainly one purpose
and were relatively simple compared to the current large-scale diverse

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 5

software systems. Over time, due to the increasing complexity and the
increasing size of the applications, the global structure of the software
system became an important issue [30]. Already in 1968, Dijkstra proposed
the correct arrangement of the structure of software systems before simply
programming [14]. He introduced the notion of layered structure in operating
systems, in which related programs were grouped into separate layers,
communicating with groups of programs in adjacent layers. Later, Pamas
claimed that the selected criteria for the decomposition of a system impact
the structure of the programs and several design principles must be followed
to provide a good structure [24][25]. Within the software engineering
community, there is now an increasing consensus that the structure of
software systems is important and several design principles must be
followed to provide a good structure [11].

In tandem with the increasing popularity of software architecture design
many definitions of software architecture have been introduced over the last
decade, though, a consensus on a standard definition is still not established.
We think that the reason why so many and various definitions on software
architectures exist is because every author approaches a different perspective
of the same concept of software architecture and likewise provides a
definition from that perspective. Notwithstanding the numerous definitions it
appears that the prevailing definitions do not generally conflict with each
other and commonly agree that software architecture represents the gross­
level structure of the software system consisting of components and relations
among them [6p.

Looking back at the historical developments of architecture design we
can conclude that in accordance with many concepts in software engineering
the concept of software architecture has also evolved over the years. We
observe that this evolution took place at two places. First, existing stable
concepts are specialized with new concepts providing a broader
interpretation of the concept of software architecture. Second, existing
interpretations on software architectures are abstracted and synthesized into
new and improved interpretations. Let us explain this considering the
development of the definitions in the last decade. The set of existing
definitions is large and many other definitions have been collected in various
publications such as [34], [27] and [33]. We provide only the definitions that
we consider as representative.

1 Compare this to the parable of "the elephant in the dark", in which four persons are in a
dark room feeling different parts of an elephant, and all believing that what they feel is the
whole beast.

www.manaraa.com

6 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

In the following definition, software architecture represents a high-level
structure of a software system. It is in alignment with the earlier concepts of
software architecture as described by Dijkstra [14] and Parnas [25].

"The logical and physical structure of a system, forged by all the
strategic and tactical design decisions applied during development"
[8J

The following definition explicitly considers the interpretation on the
elements of software architecture.

"We distinguish three different classes of architectural elements:
processing elements; data elements; and connection elements. The
processing elements are those components that supply the
transformation on the data elements; the data elements are those that
contain the information that is used and transformed; the connecting
elements (which at times may be either processing or data elements,
or both) are the glue that holds the different pieces of the architecture
together. " [27J

This definition is a specialization of the previous architecture definitions
and represents the functional aspects of the architecture focusing basically
on the data-flow in the system. Additional specialization of the structural
issues is provided by the following definition.

" ... beyond the algorithms and data structures of the computation;
designing and specifying the overall system structure emerges as a
new kind of problem. Structural issues include gross organization and
global control structure; protocols for communication,
synchronization, and data access; assignment of functionality to
design elements; physical distribution; composition of design
elements; scaling and performance; and selection among design
alternatives. This is the software architecture level of design. "[16 J

The next definition extends the previous definitions by including design
information in the architectural specification.

"The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time." [17J

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 7

Finally, the following definition abstracts from the previous definitions
and implies that software architectures have more than one structure and
includes the behavior of the components as part of the architecture.

"The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
components, the externally visible properties of those components,
and the relationships among them." [6]

The term component in this definition is used as an abstraction of varying
components [6]. This definition may be considered as a sufficiently good
representative of the latest abstraction of the concept of software
architecture.

2.2 Architecture as a Concept

The understanding on the concept of software architecture is increasing
though there are still several ambiguities. Architectures consist of
components and relations, but the term components may refer to subsystems,
processes, software modules, hardware components or something else.
Relations may refer to data flows, control flows, call-relations, part-of
relations etc. To provide a consistent and overall definition on architectures,
we need to provide an abstract yet a sufficiently precise meaning of the
components and relations. For this we provide the following definition of
architecture:

Architecture is a concept representing a set of abstractions and
relations, and constraints among these abstractions.

In essence this definition considers architecture as a concept that is
general yet well defined. We think that this definition is general enough to
cover the various perspectives on architectures. To clarify this definition and
discuss its implications we will provide a closer view on the notion of
concept.

A concept is usually defined as a (mental) representation of a category of
instances [20] and is formed by abstracting knowledge about instances. The
process of assigning new instances to a concept is called categorization or
classification. In this context, concepts are also called categories or classes.
There are several theories on concepts and classification addressing the
notions of concepts, classes, instances and categories [23][32] [26].

www.manaraa.com

8 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

In the context of software architectures the architectural concepts are also
abstractions of the corresponding domain knowledge. The content of the
domain knowledge, however, may vary per architecture design approach.

Concepts are not just arbitrary abstractions or groupings of a set of
instances but are defined by a consensus of experts in the corresponding
domain. As such concepts are stable and well-defined abstractions with rich
semantics. The definition thus enforces that each architecture consists of
components that do not only represent arbitrary groupings or categories but
are semantically well defined. For a more detailed description of the view on
software architecture as a concept, we refer to chapter 3 of [35].

3. META MODEL FOR ARCHITECTURE DESIGN
APPROACHES

In this section we provide a meta-model that is an abstraction of various
architecture design approaches. We will use this model to analyze and
compare current software architecture design approaches.

The meta-model is given in Figure 1. The rounded rectangles represent
the concepts, whereas the lines represent the association between these
concepts. The diamond symbol represents an association relation between
three or four concepts. Let us now describe the concepts individually.

The concept Client represents the stakeholder(s) who is/are interested in
the development of a software architecture design. A stakeholder may be a
customer, end-user, system developer, system maintainer, sales manager etc.

The concept Domain Knowledge represents the area of knowledge that is
applied in solving a certain problem.

The concept Requirement Specification represents the specification that
describes the requirements for the architecture to be developed.

The concept Artifact represents the artifact descriptions of a certain
method. This is, for example, the description of the artifact Class, Operation,
Attribute, etc. In general each artifact has a related set of heuristics for
identifying the corresponding artifact instances.

The concept Solution Abstraction defines the conceptual representation
of a (sub)-structure ofthe architecture.

The concept Architecture Description defines a specification of the
software architecture.

In Figure 1, there are two quaternary association relations and one ternary
association relation.

The quaternary association relation called Requirements Capturing
defines the association relations between the concepts Client, Domain
Knowledge, Requirement Specification and Architecture Description. This

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 9

association means that for defining a requirement specification the client, the
domain knowledge and the (existing) architecture description can be utilized.
The order of processing is not defined by this association and may differ per
architecture design approach.

The quaternary association relation called Extracting Solution Structures
is defined between the concepts Requirement Specification, Domain
Knowledge, Artifact and Solution Abstraction. This describes the structural
relations between these concepts to derive a suitable solution abstraction.

The ternary association relation Architecture Specification is defined
between the concepts Solution Abstraction, Architecture Description and
Domain Knowledge and represents the specification of the architecture
utilizing these three concepts.

Various architecture design approaches can be described as instantiations
of the meta-model in Figure 1. Each approach will differ in the ordering of
the processes and the particular content of the concepts.

Architecture
Description

Figure I: Meta-model for architecture design approaches

In the meta-model, the concept Domain Knowledge is used at three
different places. Since this concept plays a fundamental role in various
architectural design approaches we will now elaborate on this concept.

The term domain has different meanings in different approaches [35]. We
distinguish between the following specializations of this concept: Problem

www.manaraa.com

10 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Domain Knowledge, Business Domain Knowledge, Solution Domain
Knowledge and General Knowledge.

The concept Problem Domain Knowledge refers to the knowledge on the
problem from a client's perspective. It includes requirement specification
documents, interviews with clients, prototypes delivered by clients etc. The
concept Business Domain Knowledge refers to the knowledge on the
problem from a business process perspective. It includes knowledge on the
business processes and also customer surveys and market analysis reports.
The concept Solution Domain Knowledge refers to the knowledge that
provides the domain concepts for solving the problem and which is separate
from specific requirements and the knowledge on how to produce software
systems from this solution domain. This kind of domain knowledge is
included in for example textbooks, scientific journals, and manuals. The
concept General Knowledge refers to the general background and
experiences of the software engineer and also may include general rules of
thumb. Finally, the concept System/Product Knowledge refers to the
knowledge about a system, a family of systems or a product.

4. ANALYSIS AND EVALUATION OF
ARCHITECTURE DESIGN APPROACHES

A number of approaches have been introduced to identify the
architectural design abstractions. We classify these approaches as artifact­
driven, use-ease-driven and domain-driven architecture design approaches.
The criterion for this classification is based on the adopted source for the
identification of the key abstractions of architectures. Each approach will be
explained as a realization of the meta-model described in Figure 1.

4.1 Artifact-driven Architecture Design

We term artifact-driven architecture design approaches as those
approaches that extract the architecture description from the artifact
descriptions of the method. Examples of artifact-driven architectural design
approaches are the popular object-oriented analysis and design methods such
as OMT [29] and OAD [8]. A conceptual model for artifact-driven
architectural design is presented in Figure 2. Hereby the labeled arrows
represent the process order of the architectural design steps. The concepts
Analysis & Design Models and Subsystems in Figure 2 together represent the
concept Solution Abstraction of Figure 1. The concept General Knowledge
represents a specialization of the concept Domain Knowledge in Figure 1.

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 11

~~J
1: Describe

2:search---{ Artifact)

4: Compose-----'

Figure 2: Conceptual model of artifact-driven architectural design

We will explain this model using OMT [29], which can be considered as
a suitable representative for this category. In OMT, architecture design is not
an explicit phase in the software development process but rather an implicit
part of the design phase. The OMT method consists basically of the phases
Analysis, System Design, and Object Design. The arrow 1 :Describe
represents the description of the requirement specification. The arrow
2:Search represents the search for the artifacts such as classes in the
requirement specification in the analysis phase. An example of a heuristic
rule for identifying tentative class artifacts is the following:

IF an entity in the requirement specification is relevant
THEN select it as a Tentative Class.

The search process is supported by the general knowledge of the software
engineer and the heuristic rules of the artifacts that form an important part of
the method. The result of the 2:Search function is a set of artifact instances
that is represented by the concept Analysis &Design Models in Figure 2.

The method follows with the System Design phase that defines the
overall architecture for the development of the global structure of a single
software system by grouping the artifacts into subsystems [29]. In Figure 2,
this grouping function is represented by the function 3:Group. The software

www.manaraa.com

12 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

architecture consists of a composition of subsystems, which is defined by the
function 4:Compose in Figure 2. This function is also supported by the
concept General Knowledge.

4.1.1 Problems

In OMT, the architectural abstractions are derived by grouping a set of
classes that are elicited from the requirement specification. We argue that
hereby it is difficult to extract the architectural abstractions. We will explain
the problems using the example described in [29] on an Automated Teller
Machine (ATM) which concerns the design of a banking network. Hereby,
bank computers are connected with ATMs from which clients can withdraw
money. In addition, banks can create accounts and money can be transferred
and/or withdrawn from one account to another. It is further required that the
system should have an appropriate record keeping and secure provisions.
Concurrent accesses to the same account must be handled correctly.

The problems that we identified with respect to architecture development
are as follows:

e Textual requirements are imprecise, ambiguous or incomplete and are
less useful as a source for deriving architectural abstractions

In OMT, artifacts are searched within the textual requirement
specification and grouped into subsystems, which form the architectural
components. Textual requirements, however, may be imprecise, ambiguous
or incomplete and as such are not suitable as a source for identification of
architectural abstractions. In the example, three subsystems are identified:
ATM Stations, Consortium Computer and Bank Computers. These
subsystems group the artifacts that were identified from the requirement
specification. With respect to the transaction processing, the example only
includes one class artifact called Transaction since this was the only artifact
that could be discovered in the textual requirement specification.
Publications on transaction systems, however, show that many concerns such
as scheduling, recovery deadlock management etc. are included in designing
transaction systems [15][13][7]. Therefore, we would expect additional
classes that could not be identified from the requirement specification.

G Subsystems have poor semantics to serve as architectural components

In the given example, the component ATM stations represent a
subsystem, that is, an architectural component. The subsystem concept
serves basically as a grouping concept and as such has very poor semantics2•

2 In [2] this problem has been termed as subsystem-object distinction.

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 13

For the subsystem ATM stations it is, for example, not possible to define the
architectural properties, architectural constraints with the other subsystems,
and the dynamic behavior. This poor semantics of subsystems makes the
architecture description less useful as a basis for the subsequent phases of
the software development process.

• Composition of subsystems is not well supported

Architectural components interact, coordinate, cooperate and are
composed with other architectural components. OMT, however, does not
provide sufficient support for this process. In the given example, the
subsystem ATM Stations, Consortium Computer and Bank Computers are
composed together, though, the rationale for the presented structuring
process is performed implicitly. One could provide several possibilities for
composing the subsystems. The method, however, lacks rigid guidelines for
composing and specifying the interactions between the subsystems.

4.2 Use-Case driven Architecture Design

In the use-case driven architecture design approach, use cases are applied
as the primary artifacts for deriving the architectural abstractions. A use case
is defined as a sequence of actions that the system provides for actors [21].
Actors represent external roles with which the system must interact. The
actors and the use cases together form the use case model. The use case
model is meant as a model of the system's intended functions and its
environment, and serves as a contract between the customer and the
developers. The Unified Process [21], for example, applies a use-case driven
architecture design approach. The conceptual model for the use-case driven
architecture design approach in the Unified Process is given in Figure 3.
Hereby, the dashed rounded rectangles represent the concepts of Figure 1.
For example the concepts Informal Specification and the Use-Case Model
together form the concept Requirement Specification in Figure 1.

The Unified Process consists of core workjlows that define the static
content of the process and describe the process in terms of activities, workers
and artifacts. The organization of the process over time is defined by phases.
The Unified Process is composed of six core workflows: Business Modeling,
Requirements, Analysis, Design, Implementation and Test.

These core workflows result respectively in the following separate models:
business & domain model, use-case model, analysis model, design model,
implementation model and test model.

www.manaraa.com

14 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

4:Compos

Figure 3: Conceptual model of use-case driven architectural design

In the requirements workflow, the client's requirements are captured as
use cases which results in the use-case model. This process is defined by the
function 1 :Describe in Figure 3. Together with the informal requirement
specification, the use case model forms the requirement specification. The
development of the use case model is supported by the concepts Informal
Specification, Domain Model and Business Model that are required to define
the system's context. The Informal Specification represents the textual
requirement specification. The Business Model describes the business
processes of an organization. The Domain Model describes the most
important classes within the context of the domain. From the use case model
the architecturally significant use cases are selected and use-case
realizations are created as it is described by the function 2:Realize. Use case
realizations determine how the system internally performs the tasks in terms
of collaborating objects and as such help to identify the artifacts such as
classes. The use-case realizations are supported by the knowledge on the
corresponding artifacts and the general knowledge. This is represented by
the arrows directed from the concepts Artifact and General Knowledge
respectively, to the function 2:Realize. The output of this function is the

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 15

concept Analysis & Design Models, which represents the identified artifacts
after use-case realizations.

The analysis and design models are then grouped into packages, which is
represented by the function 3:Group. The function 4:Compose represents the
definition of interfaces between these packages resulting in the concept
Architecture Description. Both functions are supported by the concept
General Knowledge.

4.2.1 Problems

In the Unified Process, first the business model and the domain model are
developed for understanding the context. Use case models are then basically
derived from the informal specification, the business model and the domain
model. The architectural abstractions are derived from realizations of
selected use cases from the use case models.

We think that this approach has to cope with several problems in
identifying the architectural abstractions. We will motivate our statements
using the example described in [21, pp. 113] that concerns the design of an
electronic banking system in which the internet will be used for trading of
goods and services and likewise include sending orders, invoices, and
payments between sellers and buyers. The problems that we encountered are
listed as follows:

• Leveraging detail of domain model and business model is difficult

The business model and domain models are defined before the use case
model. The question raises then how to leverage the detail of these models.
Before use cases are known it is very difficult to answer this question since
use cases actually define what needs to be developed. In [21, pp. 120] a
domain model is given for an electronic banking system example. Domain
models are derived from domain experts and informal requirement
specifications. The resulting domain model includes four classes: Order,
Invoice, Item and Account. The question here is whether these are the only
important classes in electronic banking systems. Should we consider also the
classes such as Buyer and Seller? The approach does not provide sufficient
means for defining the right detail of the domain and business models3.

3 Use cases focus on the functionality for each user of the system rather than just a set of
functions that might be good to have. In that sense, use cases form a practical aid for
leveraging the requirements. They are however less practical for leveraging the domain
and business models.

www.manaraa.com

16 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

It Selecting architecturally relevant use-cases is not systematically
supported

For the architecture description, 'architecturally relevant' use cases are
selected. The decision on which use cases are relevant lacks objective
criteria and is merely dependent on some heuristics and the evaluation of the
software engineer. For example, in the given banking system example, the
use case Withdraw Money has been implicitly selected as architecturally
relevant and other use cases such as Deposit Money and Transfer between
Accounts have been left out.

OIl Use-cases do not provide a solid basis for architectural abstractions

After the relevant use cases have been selected they are realized, which
means that analysis and design classes are identified from the use cases. Use­
case realizations are supported by the heuristic rules of the artifacts, such as
classes, and the general knowledge of the software engineer. This is 'Similar
to the artifact-driven approach in which artifacts are discovered in the textual
requirements. Although use cases are practical for understanding and
representing the requirements, we maintain that they do not provide a solid
basis for deriving architectural design abstractions. Use cases focus on the
problem domain and the external behavior of the system. During use case
realizations, transparent or hidden abstractions that are present in the
solution domain and the internal system may be difficult to identify. Thus
even if all the relevant use cases have been identified it may still be difficult
to identify the architectural abstractions from the use case model. In the
given banking system example, the use case-realization of Withdraw Money
results in the identification of the four analysis classes Dispenser, Cashier
Interface, Withdrawal and Account [21, pp. 44]. The question here is
whether these are all the classes that are concerned with withdrawal. For
example, should we also consider classes such as Card and Card Check?
The transparent classes cannot be identified easily if they have not been
described in the use case descriptions.

® Package construct has poor semantics to serve as an architectural
component

The analysis and design models are grouped into package constructs.
Packages are, similar to subsystems in the artifact-driven approach, basically
grouping mechanisms and as such have poor semantics. The grouping of
analysis and design classes into packages and the composition of the
packages into the final architecture are also not well supported and basically
depend on the general knowledge of the software engineer. This may again

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 17

lead to ill-defined boundaries of the architectural abstractions and their
interactions.

It Applied heuristics are implicitly based on the structural paradigm and
hinder to identify and define the fundamental abstractions of current
large scale and diverse applications.

A close look at the Unified Process results in the interesting observation
that the heuristics that are applied to identify the abstractions, which are
needed to define the architectural components, are essentially based on the
traditional structural paradigm of software development [38]. In this
paradigm, data is processed by a set of functions resulting in some output
data. The basic abstractions that define the architectural components in the
Unified Process are the classes and packages. Classes are derived from the
use case model by searching for entities that are needed for interfacing,
control and information. Packages are derived from the problem domain and
use cases that support specific business processes, require specific actors or
use cases that are related via generalizations and extends-relations. Both in
class identification and package identification, actually functional entities are
searched that get some input data, process these and provide some output
data. This bias from the early period of software engineering, which largely
dealt with defining systems for numerical applications, is not suitable
anymore for identifying and defining the architectural abstractions of current
large-scale, diverse systems. According to the definition of architecture in
section 2.2, the components of architecture represent the fundamental
abstractions of the domain. From this perspective, the architectural
components may also correspond to non-functional abstractions.

4.3 Domain-driven Architecture Design

Domain-driven architecture design approaches derive the architectural
design abstractions from domain models. The conceptual model for this
domain-driven approach is presented in Figure 4.

Domain models are developed through a domain analysis phase
represented by the function 2:Domain Analysis. Domain analysis can be
defined as the process of identifying, capturing and organizing domain
knowledge about the problem domain with the purpose of making it reusable
when creating new systems [28]. The function 2:Domain Analysis takes as
input the concepts Requirement Specification and Domain Knowledge and
results in the concept Domain Model. Note that both the concepts Solution
Domain Knowledge and Domain Model in Figure 4 represent the concept
Domain Knowledge in the meta-model of Figure 1.

www.manaraa.com

18 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

C~J
1 :Describe

3:Domain Design

Figure 4: Conceptual model for Domain-Driven Architecture Design

The domain model may be represented using different representation
forms such as classes, entity-relation diagrams, frames, semantics networks,
and rules. Several domain analysis methods have been published, e.g. [18],
[22], [28], [31] and [12]. Two surveys of various domain analysis methods
can be found in [3] and [40]. In [12] a more recent and extensive up-to-date
overview of domain engineering methods is provided.

In this chapter we are mainly interested in the approaches that use the
domain model to derive architectural abstractions. In Figure 4, this is
represented by the function 3:Domain Design. In the following we will
consider two domain-driven approaches that derive the architectural design
abstractions from domain models.

4.3.1 Product-line Architecture Design

In the product-line architecture design approach, an architecture is
developed for a software product-line that is defined as a group of software­
intensive products sharing a common, managed set of features that satisfy
the needs of a selected market or mission area [10]. A software product line
architecture is an abstraction of the architecture of a related set of products.
The product-line architecture design approach focuses primarily on the reuse
within an organization and consists basically of the core asset development
and the product development. The core asset base often includes the
architecture, reusable software components, requirements, documentation
and specification, performance models, schedules, budgets, and test plans

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 19

and cases [4], [5], [10]. The core asset base is used to generate or integrate
products from a product line.

The conceptual model for product-line architecture design is given in
Figure 5. The function 1 :Domain Engineering represents the core asset base
development. The function 2:Application Engineering represents the product
development from the core asset base.

1 :Domain Engineering

2:Application Engineering

c~
Figure 5: A conceptual model for a Product-Line Architecture Design

Note that various software architecture design approaches can be applied
to provide a product-line architecture design. In the following section we
will describe an approach that follows the conceptual model for product-line
architecture design in Figure 5.

4.3.2 Domain Specific Software Architecture Design

The domain-specific software architecture (DSSA) [19][37] may be
considered as multi-system scope architecture, that is, it derives an
architectural description for a family of systems rather than a single-system.
The conceptual model of this approach is presented in Figure 6.

The basic artifacts of a DSSA approach are the domain model, reference
requirements and the reference architecture. The DSSA approach starts with
a domain analysis phase on a set of applications with common problems or
functions. The analysis is based on scenarios from which functional
requirements, data flow and control flow information is derived. The domain
model includes scenarios, domain dictionary, context (block) diagrams, ER
diagrams, data flow models, state transition diagrams and object models.

www.manaraa.com

20 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Domain Model

4:Derive

:. Architecture Description

Figure 6: Conceptual model for Domain Specific Software Architecture (DSSA) approach

In addition to the domain model, reference requirements are defined that
include functional requirements, non-functional requirements, design
requirements and implementation requirements and focus on the solution
space. The domain model and the reference requirements are used to derive
the reference architecture. The DSSA process makes an explicit distinction
between a reference architecture and an application architecture. A
reference architecture is defined as the architecture for a family of
application systems, whereas an application architecture is defined as the
architecture for a single system. The application architecture is instantiated
or refined from the reference architecture. The process of
instantiatingirefining and/or extending a reference architecture is called
application engineering.

4.3.3 Problems

Since the term domain is interpreted differently there are various domain­
driven architecture design approaches. We list the problems for problem
domain analysis and solution domain analysis.

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 21

• Problem domain analysis is less effective in deriving architectural
abstractions

Several domain-driven architecture approaches interpret the domain as a
problem domain. The DSSA approach, for example, starts from an informal
problem statement and derives the architectural abstractions from the domain
model that is based on scenarios. Like use cases, scenarios focus on the
problem domain and the external behavior of the system. We think that
approaches that derive abstractions from the problem domain, such as the
DSSA approach, are less effective in deriving the right architectural
abstractions. Let us explain this using the example in [36] in which an
architecture for a theater ticket sales application is constructed using the
DSSA approach. In this example a number of scenarios such as Ticket
Purchase, Ticket Return, Ticket Exchange, Ticket Sales Analysis, and
Theater Configuration are described and accordingly a domain model is
defined based on these scenarios. The question hereby is whether the given
scenarios fully describe the system and as such result in the right scoping of
the domain model. Are all the important abstractions identified? Do there
exist redundant abstractions? How can this be evaluated? Within this
approach and other approaches that derive the abstractions from the problem
domain these questions remain rather unanswered.

• Solution domain analysis is not sufficient
Although solution domain analysis provides the potential for modeling

the whole domain that is necessary to derive the architecture, it is not
sufficient to drive the architecture design process. This is due to two reasons.
First, solution domain analysis is not defined for software architecture design
per se, but rather for systematic reuse of assets for activities in, for example,
software development. Since the area on which solution domain analysis is
performed may be very wide, it may easily result in a domain model that is
too large and includes abstractions that are not necessary for the
corresponding software architecture construction. The large size of the
domain model may hinder the search for the architectural abstractions. The
second problem is that the solution domain may not be sufficiently cohesive
and stable to provide a solid basis for architectural design. Concepts in the
corresponding solution domain may not have reached a consensus yet and
still be under development. Obviously, one cannot expect to provide an
architecture design solution that is better than the solution provided by the
solution domain itself. Therefore, a thorough solution domain analysis may
in this case also not be sufficient to provide stable abstractions.

www.manaraa.com

22 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

5. OVERVIEW OF THE ARCHITECTURE DESIGN
APPROACHES IN THIS BOOK

The chapters in part 2 of this book are devoted to the architectural issues
in software development. Chapters 3, 4 and 5 present architecture design
methods. Chapter 6 proposes a set of basic abstractions to design various
kinds of message-based architectures. Chapters 7 and 8 describe means to
refine architectures into object-oriented software systems. In the following,
we give a brief summary of these chapters from the perspective of
architecture design.

Chapter 3 emphasizes the importance of the so-called non-functional
prope11ies in architecture design. By using a car navigation system design
example, the chapter illustrates how the functional and non-functional
requirements can be considered in a uniform manner. The functional design
of the architecture is use-case driven, and therefore, confirms to the design
model shown in Figure 3. The non-functional part of the design is, however,
solution-domain driven and can be considered as an instantiation of the
design model shown in Figure 4. For example, deadline and schedulability
solution-domain techniques are used to analyze and design the non­
functional characteristics of the architecture.

In chapter 4, by the help of two industrial design problems, a product-line
architecture design method is presented. This is a domain-driven architecture
design approach, which confirms the design models shown in figure 4 and
figure 5. The architectural abstractions are derived by using both use-cases
and solution domain abstractions.

In chapter 5, a synthesis-based architecture design method is presented.
In this method, the functional requirements, which may be derived from the
use cases, are first expressed in terms of technical problems. These problems
are then synthesized towards solutions by systematically applying solution
domain knowledge. This approach can be considered as a specialization of
the domain-driven architecture design method shown in Figure 4.

In chapter 6, first various message-oriented interaction styles are
analyzed. A set of basic abstractions is derived from the solution domains
such message-oriented interaction models, delivery semantics and reliability
concerns. The expressiveness of these abstractions are motivated by a
number of examples.

Chapter 7 proposes a logic meta-programming language to capture and
preserve the architectural constraints along the refinement process.

Chapter 8 proposes a technique called Design Algebra to analyze and
refine various architecture implementation alternatives by using quality
factors such as adaptability and performance.

www.manaraa.com

CLASSIFYING AND EVALUA71NG ARCHITECTURE DESIGN METHODS 23

6. CONCLUSION

In this chapter we have defined architecture as a set of abstractions and
relations that together form a concept. Further, a meta-model that is an
abstraction of software architecture design approaches is provided. We have
used this model to analyze, compare and evaluate architecture design
approaches. These approaches have been classified as artifact-driven, use­
case-driven and domain-driven architecture design approaches. The criterion
for this classification is based on the adopted source for the identification of
the key abstractions of architectures. In the artifact-driven approaches the
architectural abstractions are represented by groupings of artifacts that are
elicited from the requirement specification. Use-case driven approaches
derive the architectural abstractions from use case models that represent the
system's intended functions. Domain-driven architecture design approaches
derive the architectural abstractions from the domain models. For each
approach, we have described the corresponding problems and motivated why
these sources are not optimal in identifying the architectural abstractions. We
can abstract the problems basically as follows:

1. Difficulties in Planning the Architectural Design Phase
Planning the architecture design phase in the software development

process is a dilemma4 . In general, architectures are identified before or after
the analysis and design phases. Defining the architecture can be done more
accurately after the analysis and design models have been determined
because these impact the boundaries of the architecture. This may lead,
however, to an unmanageable project because the architectural perspective
in the software development process will be largely missing. On the other
hand, planning the architecture design phase before the analysis and design
phases may also be problematic since the architecture may not have optimal
boundaries due to insufficient knowledge on the analysis and design
models5.

In artifact-driven architecture design approaches the architecture phase
follows after the analysis and design phases and as such the project may
become unmanageable. In the domain-driven architecture design approaches
the architecture design phase follows a domain engineering phase in which
first a domain model is defined from which consequently architectural
abstractions are extracted. Hereby the architecture definition may be

4 In [2] this problem has been denoted as the early decomposition problem.
S An analogy of this problem is writing an introduction to a book. To organize and manage

the work on the different chapters it is required to provide a structure of the chapters in
advance. However. the final structure of the introduction can be usually only defined after
the chapters have been written and the complete information on the structure is available.

www.manaraa.com

24 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

unmanageable if the domain model is too large. In the use-case driven
architecture design approach the architecture definition phase is part of the
analysis and design phase and the architecture is developed in an iterative
way. This does not completely solve the dilemma since the iterating process
is mainly controlled by the intuition of the software engineer.

2. Client requirements are not a solid basis for architectural abstractions
The client requirements on the software-intensive system that needs to be

developed is different from the architectural perspective. The client
requirements provide a problem perspective of the system whereas the
architecture is aimed to provide a solution perspective that can be used to
realize the system. Due to the large gap between the two perspectives the
architectural abstractions may not be directly obvious from the client
requirements. Moreover, the requirements themselves may be described
inaccurately and may be either under-specified or over-specified. Therefore,
sometimes it is also not preferable to adopt the client requirements.

This problem is apparent in all the approaches that we analyzed. In the
artifact-driven approach the client requirements are directly used as a source
for identifying the architectural abstractions. The use-case driven approach
attempts to model the requirements also from a client perspective by
utilizing use case models. In the domain-driven approaches, such as the
domain specific software architecture design approach (DSSA), informal
specifications are used to support the development of scenarios that are
utilized to develop domain models.

3. Leveraging the domain model is difficult
The domain-driven and the use case approaches apply domain models for

the construction of software architecture. Uncontrolled domain engineering
may result in domain models that lack the right detail of abstraction to be of
practical use. The one extreme of the problem is that the domain model is
too large and includes redundant abstractions; the other extreme is that it is
too small and misses the fundamental abstractions. Domain models may also
include both redundant abstractions and still miss some other fundamental
abstractions. It may be very difficult to leverage the detail of the domain
model.

This problem is apparent in domain-driven and the use-case driven
approaches. In the domain-driven approaches that derive domain models
from problem domains, such as the DSSA approach, leveraging the domain
model is difficult because it is based on scenarios that focus on the system
from a problem perspective rather than a solution perspective. In the use­
case driven architecture design approach, leveraging the domain model and

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 25

business model is difficult since it is performed before use-case modeling
and it is actually not exactly known what is desired.

4. Architectural abstractions have poor semantics
A software architecture is composed of architectural components and

architectural relations among them. Often architectural components are
similar to groupings of artifacts, which are named as subsystems, packages
etc. These constructs do not have sufficiently rich semantics to serve as
architectural components. Architectural abstractions should be more than
grouping mechanisms and the nature of the components and their relations,
and the architectural properties, the behavior of the system should be
described as well [9]. Because of the lack of semantics of architectural
components it is very hard to understand the architectural perspective and
make the transition to the subsequent analysis and design models.

5. Composing architectural abstractions is weakly supported
Architectural components interact, coordinate, cooperate and are

composed with other architectural components. The architecture design
approaches that we evaluated do not provide, however, explicit support for
composing architectural abstractions.

ACKNOWLEDGEMENTS

This research has been supported and funded by various organizations
including Siemens-Nixdorf Software Center, the Dutch Ministry of
Economical affairs under the SENTER program, the Dutch Organization for
Scientific Research (NWO, lnconsistency management in the requirements
analysis phase' project), the AMIDST project, and by the 1ST Project 1999-
14191 EASYCOMP.

7. REFERENCES

1. G. Abowd, L. Bass, R. Kazman and M. Webb. SAAM: A Method for Analyzing the
Properties of Software Architectures. In: Proceedings of the 16th International
Conference on Software Engineering, CA: IEEE Computer Society Press, pp. 81-90,
May, 1994.

2. M. Ak~it and L. Bergmans. Obstacles in Object-Oriented Software Development. In
Proceedings OOPS LA '92, ACM SIGPPLAN Notices, Vol. 27, No. 10, pp. 341-358,
October 1992.

3. G. Arrango. Domain Analysis Methods. In: Software Reusability, Schafer, R. Prieto­
Diaz, and M. Matsumoto (Eds.), Ellis Horwood, New York, New York, pp. 17-49, 1994.

www.manaraa.com

26 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

4. L. Bass, P. Clements, S. Cohen, L. Northrop, and 1. Withey. Product Line Practice
Workshop Report, Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1997.

5. L. Bass, P. Clements, G. Chastek, S. Cohen, L. Northrop and 1. Withey. 2nd Product
Line Practice Workshop Report, Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1997.

6. L. Bass, P. Clements and R. Kazman. Software Architecture in Practice, Addison­
Wesley 1998.

7. P.A. Bernstein and E. Newcomer. Principles of Transaction Processing, Morgan
Kaufman Publishers, 1997.

8. G. Booch. Object-Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc, 1991.

9. P. Clements. A SunJey of Architectural Description Languages. In: Proceedings of the
8th International Workshop on Software Specification and Design, Paderborn, Germany,
March, 1996.

10. P. Clements and L.M. Northrop. Software Architecture: An Executive Overview,
Technical Report, CMU/SEI-96-TR-003, Carnegie Mellon University, 1996.

11. P. Clements, D. Parnas and D. Weiss. The Modular Structure of Complex Systems. IEEE
Transactions on Software Engineering, Vol. 11, No.1, pp. 259-266, 1985.

12. K. Czarnecki & U.W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

13. C.l. Date. An Introduction to Database Systems, Vol. 3, Addison Wesley, 1990.
14. E.W. Dijkstra. The Structure oftheTH.E.' Mulitprogramming System. Communications

of the ACM, Vol. 18, No.8, pp. 453-457, 1968.
15. A.K. Elmagarmid (ed.) Transaction Management in Database Systems, Morgan

Kaufmann Publishers, 1991.
16. D. Garlan and M. Shaw. An Introduction to Software Architecture. Advances in:

Software Engineering and Knowledge Engineering. Vol 1. River Edge, NJ: World
Scientific Publishing Company, 1993.

17. D. Garlan, R. Allen and J. Ockerbloom. Architectural Mismatch: Why It's Hard to Build
Systems Out of Existing Parts. In: Proceedings of the 17th International Conference on
Software Engineering. Seattle, WA, April 23-30, 1995. New York: Association for
Computing Machinery, pp. 170-185, 1995.

18. H. Gomaa. An Object-Oriented Domain Analysis and Modeling Method for Software
Reuse. In: Proceedings of the Hawaii International Conference on System Sciences,
Hawaii, January, 1992.

19. F. Hayes-Roth. Architecture-Based Acquisition and Development of Software:
Guidelines and Recommendations from the ARPA Domain-Specific Software
Architecture (DSSA) Program. Version 1.01, Technical Report, Teknowledge Federal
Systems, 1994.

20. R.W. Howard. Concepts arId Schemata: An Introduction, Cassel Education, 1987.
21. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.

Addison-Wesley, 1999.
22. K. Kang, S. Cohen, 1. Hess, W. Nowak and S. Peterson. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, November
1990.

23. G. Lakoff. Women, Fire, and Dangerous Things: What Categories Reveal about the
Mind, The University of Chicago Press, 1987.

www.manaraa.com

CLASSIFYING AND EVALUATING ARCHITECTURE DESIGN METHODS 27

24. D. Parnas. On the Criteria for Decomposing Systems into Modules. Communications of
the ACM, Vol. 15, No. 12, pp. 1053-1058, 1972.

25. D. Parnas. On the Design and Development of Program Families. IEEE Transactions on
Software Engineering SE-2, 1: 1-9, 1976.

26. J. Parsons and Y. Wand. Choosing Classes in Conceptual Modeling, Communications of
the ACM, Vol 40. No.6., pp. 63-69, 1997.

27. D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architecture. Software
Engineering Notes, ACM SIGSOFT 17, No.4, pp. 40-52, October 1992.

28. R. Prieto-Diaz and G. Arrango (Eds.). Domain Analysis and Software Systems Modeling.
IEEE Computer Society Press, Los Alamitos, California, 1991.

29. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented
Modeling and Design, Prentice Hall, 1991.

30. M. Shaw and D. Garlan. Software Architectures: Perspectives on an Emerging
Discipline, Englewood Cliffs, NJ: Prentice-Hall, 1996.

31. M. Simos, D. Creps, C. Klinger, L. Levine and D. Allemang. Organization Domain
Modeling (ODM) Guidebook, Version 2.0. Informal Technical Report for STARS,
STARS-VC-A025/001/00, June 14, http://www.synquiry.com. 1996.

32. E.E. Smith and D.L. Medin. Categories and Concepts, Harvard University Press,
London, 1981.

33. Software Engineering Institute, Carnegie Mellon university, Web-site:
http://www.sei.cmu.edularchitecture/. 2000.

34. D. Soni, R. Nord and C. Hofmeister. Software Architecture in Industrial Applications.
196-210. Proceedings of the 17th International ACM Conference on Software
Engineering, Seattle, W A, 1995.

35. B. Tekinerdogan. Synthesis-Based Software Architecture Design, PhD Thesis, Dept. Of
Computer Science, University of Twente, March 23, 2000.

36. W. Tracz. DSSA (Domain-Specific Software Architecture) Pedagogical Example. In:
ACM SIGSOFT Software Engineering Notes, Vol. 20, No.4, July 1995.

37. W. Tracz and L. Coglianese. DSSA Engineering Process Guidelines. Technical Report.
ADAGE-IBM-9202, IBM Federal Systems Company, December, 1992.

38. E. Yourdon. Modern Structured Analysis. Yourdon Press, 2000.
39. Webster on-line Dictionary, http://www.m-w.comlcgi-binldictionary. 2000.
40. S. Wartik and R. Prieto-Diazo Criteria for Comparing Domain Analysis Approaches. In:

International Journal of Software Engineering and Knowledge Engineering, Vol. 2, No.
3, pp. 403-431, September 1992.

www.manaraa.com

Chapter 2

GUIDELINESS FOR IDENTIFYING OBSTACLES
WHEN COMPOSING DISTRIBUTED SYSTEMS
FROM COMPONENTS

Mehmet Ak~it and Lodewijk Bergmans
TRESE Group, Department of Computer Science, University ofTwente, postbox 217,
7500 AE, Enschede, The Netherlands. email: {aksU.bergmans}@cs.utwente.nl.
www: http://trese.cs.utwente.nl

Keywords: Distributed systems, aspects of computer science sub-domains, obstacles in
component composition, research in component composition

Abstract: Component-oriented programming enables software engineers to implement
complex applications from a set of pre-defined components. Although this
technique has several advantages, experiences show that effective composition
of components remains a difficult task. This is especially true if the software
system is physically distributed. This chapter provides a set of guidelines to
identify the obstacles that software engineers may experience while designing
distributed systems using the current component technology. To this aim, the
computer science domain is divided into several sub-domains, and each sub­
domain is described using its important aspects. Further, each aspect is
analyzed with respect to the current component technology. This analysis
helps software engineers to identify the possible obstacles for each aspect of a
sub-domain. The chapter concludes with references to the relevant research
activities that are presented in this book.

www.manaraa.com

30 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

L DEFINITIONS

1.1 Middleware Systems

To identifY the obstacles related to composing components, we will refer
to the distributed system architecture shown in Figure 1. From an abstract
view, a distributed system can be divided into two layers: software
applications and the middleware. We assume that software applications
provide services to an environment, which is considered external to the
software system. Application services can be considered specific, evolving
and diverse. The middleware abstracts the underlying computing and
networking technology and provides services that are required by most of
applications.

t Distributed services t
• .J,

Software applications, integration and specialization
of components

! !
Available middleware technology (CORBA and WIN)

and networks

Figure 1: Reference middleware architecture

The main motivation in adopting a middleware is economics. Instead of
repeatedly implementing services that are required by most distributed
applications each time an application is developed, it is more economic to
provide these generic services by the middleware system. For example,
almost every distributed application requires a name server and remote
invocation mechanism. Many distributed applications require transaction and
security services. To determine the services required for a particular
middleware system, it is necessary to enumerate the services that are

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 31

required by most applications likely to be installed on the middleware.
Accordingly, the middleware system should provide these services.

1.2 The Obstacles Caused by Complexity and Evolution
of Applications

Unfortunately, complexity and evolution of applications make designing
distributed applications a difficult task.

Complexity may hinder a proper decomposition of the software systems
into autonomous modules. Moreover, some aspects of the applications may
not be expressed sufficiently by the adopted design and/or language models.
We term the first problem as the decomposition problem and the latter as the
lack of expression power problem.

We observe the following three affects of evolution: Firstly, the
application domain of the middleware technology grows steadily. For
instance, nomadic and agent-based computing are some examples of new
developments in the area of distributed systems. These new applications
generally require extensions to the current middleware services.

Secondly, demands for extensions to existing services require
modifications to middleware. For example, most business applications today
require support for flexible transactions, whereas current middleware
systems generally provide strict serialization and recovery.

Finally, it is becoming more and more common that middleware systems
offer services of different quality. These, the so-called quality of services can
be defined in terms of various parameters such as performance, reliability,
and security. The users of a system can be allowed to select the required
quality of a service with respect to a certain cost.

The middleware designers may attempt to solve the above-mentioned
problems by implementing a dedicated service for each particular service
demand. Since demands are evolving and diverse, this would require
continuous implementations of many services, which is unfeasible. Instead
of implementing a dedicated set of application services, it may be more
feasible to compose application services from simpler components that
correspond to the fundamental aspects of the application being designed.
Obviously component composition here plays a major role. The difficulties
that the designers may experience in composing components are termed as
the composition problem.

www.manaraa.com

32 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

1.3 Identification of Obstacles Using Domain Analysis

In this chapter we adopt domain analysis techniques to identify the
obstacles in designing distributed systems l . Figure 2 illustrates the domain
analysis process adopted in this chapter. The first stage is to formulate the
technical problems in the requirement specification. Second, these problems
are used to select the corresponding solution domains. Third, if the solution
domains are found, then the aspects of these domains are determined.
Fourth, the expected obstacles are identified for each aspect. Finally, the
obstacles are brought into the context of the application.

5: Consider
Requirement specification .,.----------1

Figure 2: The domain analysis process

In general, the domain of a software system can be intuitively divided
into three, possibly overlapping categories:

® Application domain;
@ Mathematical domain;
@ Computer science domain.

The application domain corresponds to the specific concepts of the
application being developed. Assume for example that we want to design a
distributed container transport system, which has two main tasks: allocation
of containers to the vessels, and creating route plans for the vessels to
transport containers among seaports. The application domain here deals with
the specific application features of a container transport system such as
modeling containers, vessels and seaports.

The mathematical domain deals with the concepts studied within the area
of mathematical sciences. In the container transport system example,
allocation of containers to vessels and routing vessels among seaports can be
seen as mathematical optimization problems.

Since we are interested in software realization techniques, the topics
studied in computer science must be considered as well. In the container

1 For a more detailed description of domains, the reader may refer to chapter 1 ofthis book.

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 33

transport system example, a possible computer science domain is distributed
systems since the container transport system is expected to run on multiple
sites, such as at vessels and seaports.

Application domains are generally very diverse and therefore it is not
possible to reason about the domain of an application without precisely
specifying it. The mathematical domain is considered out of the scope of this
chapter. In the following sections, the main focus will be on the computer
science domain.

The remaining sections of this chapter are organized as follows. The
assumptions in analyzing the computer science domain are presented in the
following section. Further, aspects general to all sub-domains are introduced
and the expected obstacles per aspect are identified. The obstacles are
printed as underlined and in Italics. In section 3, the computer science
domain is divided into several sub-domains. Each sub-domain is described
by using its important aspects and for each aspect the expected obstacles are
described. Finally, section 4 gives conclusions. Appendix summarizes the
identified obstacles and refers to the relevant sections ofthis chapter.

2. IDENTIFYING THE OBSTACLES BY
ANALYZING THE COMPUTER SCIENCE
DOMAIN

2.1 Assumptions

To identify the obstacles of using components from the computer science
perspective, we make the following assumptions:

flI The computer science domain can be decomposed into sub-domains
such as application generators, concurrent processing, constraint
systems, control systems, distributed systems and real-time systems.

III The level of detail of each sub-domain can be quite different. For
example, the domain of concurrency and synchronization can be
considered to be more basic than application generator design.

III Each sub-domain is specified in terms of its aspects. The aspects of a
domain are the important features that distinguish that domain from
others.

III The intention is to provide intuitive and somewhat historical
classification of the computer science domain. To further abstract the
aspects of sub-domains may result in too abstract models (such as

www.manaraa.com

34 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

lambda calculus), which we consider less suitable for the purpose of this
chapter.

III While we are listing the aspects of a sub-domain, we prefer to include
aspects only specific to that sub-domain, although in practice, very few
pure domain-specific applications are developed. For example, although
almost all distributed systems provide some degree of concurrency, we
will treat concurrency separate from the distribution aspects.

c While defining the computer science sub-domains, we do not intent to
analyze application specific issues but rather we want to know what kind
of computation models are needed to support applications in that sub­
domain. For example, when we talk about the security aspects in
distributed systems and try to identify the problems related to these, we
do not intent to assess the basic security enforcement techniques such as
encryption, decryption and digital signatures. But rather, we would like
to assess the applicability of the component model to support secure
distributed systems.

Ql Some aspects are applicable to all sub-domains.

2.2 The Common Aspects of aU Domains

The aspects described in subsections 2.2.1 to 2.2.7 are general and maybe
used in supporting all kinds of distributed applications and middleware
systems.

2.2.1 Components, Objects and Classes

Components are defined as autonomous software modules with well­
defined interfaces. In the literature the term component generally refers to
the abstractions provided by the enabling technology such as CORBA,
DCOM, OLE, ActiveX and JavaBeans [17]. Objects are instantiations of
classes, provide encapsulation and are characterized by well-defined
interfaces. Component and objects are related to each other in that any
composite and autonomous object structure, in principle, can be considered
as a componene. The component concept is general and suitable for
constructing distributed applications and middleware systems.

2 We will use the term component for components provided by the enabling technology, and
for autonomous objects specified by an object-oriented language.

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 35

2.2.2 Interface Declarations and Type Checking

One of the fundamental characteristics of components is the specification
of the functional interface. For example, CORBA introduces the Interface
Definition Language (IDL) for specifYing the interfaces of CORBA
components. Strongly typed object-oriented languages provide type­
checking mechanism based on the object (class) interface concept. Further,
class hierarchies can be used to define sub-type hierarchies.

Although typing the interface of components is useful for early detecting
the interaction errors, problems can be experienced when all the meaningful
combinations of components have to be declared as a separate type module.
In this case, the designers may be forced to declare a large number of type
modules.

Assume for example that a car game is to be constructed from
components. The Abstract Factory pattern [10] is used for creating various
car models in a flexible way. In this pattern, the factory component provides
a set of operations to create consistent car components so that a car model
can be safely composed from these components. Here, the factory
component can be considered as the type of a consistent car model. As a
result, for each version of a car model a different factory is necessary. Since
a car model may have many different versions, it is necessary to define many
factories. This problem is termed as the excessive type declarations problem.

2.2.3 Encapsulation and Multiple Interfaces

Encapsulation is an essential property of components and supported by
all component models. Depending on the context, distributed applications
may require some means to control the visibility of operations of a
component.

Assume for example that a mail component migrates over a network
passing through different layers. This generally requires changing the
interface of the mail component based on its context. For example, the mail
sender must have an access to the interface for creating the mail attributes
such as the content. The mail-system layer must have an access to the
interface of the mail component for approving and delivering the mail. It is
not desirable, for example that the mail sender approves the mail and the
mail system reads the mail content. This means that every mail component
must be able to check the identity of the sender of a request, for example,
before returning the mail content. The current component models, however,
may have difficulties in detecting the sender of a request. Moreover, if the
view checking is realized in the implementation of an operation, then the
view checking and operation semantics become not separable. This makes a

www.manaraa.com

36 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

separate extension of the view checking mechanism and/or operation
semantics difficult. Note that introducing a different implementation
component for every interface cannot provide the necessary solution. This is
because there must be one component, with a single identity, and a single
state, which behaves differently according to the way it is being interfaced.
This problem is termed as the multiple-views problem [2][5][7].

2.2.4 Message Passing

Message passing is the basic mechanism to express coordination among
components. Applications may demand flexible message passing semantics
from the middleware. Assume for example that an office workflow system
has to be designed for supporting various office activities such as reporting,
planning, internal request handling, agenda management and electronic
meeting. Several of these activities must be executed concurrently. Further,
electronic meetings may require stream-based communication.

In current component models, reuse and extensibility issues focus on
extending and redefining the features of components. However, the concept
of message passing, although a key feature of components, is not subject to
such interest. Instead, the semantics of message passing are fixed, or can, at
best, be picked from a small set of fixed semantics. Examples are the remote
procedure call mechanism, asynchronous message passing, broadcast and
multicast, and atomic message send semantics.

These fixed semantics cannot be tailored to model application-specific
interaction mechanisms. To model alternative interaction mechanisms, code
for implementing these must be added to all implementations of components
participating in the interaction, provided it is possible. It is even harder to
abstract interaction mechanisms and reuse this abstraction. Concluding, a
mechanism, which can implement tailored semantics for message passing is
required to solve these problems. Such a solution should allow the
application of component-oriented techniques to obtain extensibility and
reusability. This is termed as the fixed message passing semantics problem.

2.2.5 Inheritance and Aggregations

Generally, behavioral composition of components is realized using
inheritance and/or aggregation mechanisms.

Inheritance provides a compile-time XOR-signature composition of
operations of components in a transitive way. An XOR-signature
composition means that any inherited or self-defined operation of a
component may be invoked exclusively and independently. A transitive­
composition means that the inherited operations are automatically available

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 37

to the subclasses of the component. The pseudo variable self 3 is essential,
and used to refer to the component which received the operation call.

In case of an aggregation, the composed component should aggregate the
components that are needed to be composed. This is for example
exemplified by various design patterns such as Bridge, State and Strategy
[10]. A programming effort is necessary to implement XOR-signature
composition such as declaring the necessary operations at the interface of the
aggregating component and forwarding the calls on these operations to the
aggregated components.

Inheritance and aggregation show different run-time and visibility
characteristics. Both mechanisms have advantages and disadvantages. The
main advantage of inheritance is that it provides a transitive reuse
mechanism. Further inheritance is generally more efficient to implement
than component aggregation. Disadvantages of inheritance are that
inheritance cannot cope with run-time extensions and requires knowledge
about the implementation of components. Further, in case of multiple
inheritance name conflicts of the inherited operations may occur.

One important advantage of aggregation is that the aggregating
component depends only on the interface operations of the aggregated
components. This simplifies the design and improves the ease of reuse.
Further, the aggregated components can be easily changed at run-time.
Because of these advantages, most component models prefer aggregations to
inheritance.

The main disadvantage aggregation is the lack of support for a transitive
reuse mechanism. For example, sometimes in a distributed system the
interface of a component cannot be fixed. Implementation improvements or
migrating to a different platform may require extensions to the interface of a
component. The Bridge and Strategy patterns [15] can be used to define
components with dynamically changing implementations4• These patterns
represent the alternative implementations as aggregated components, which
can be changed at run-time. There are, however, a number of problems with
this approach [3]. First, the aggregating component must declare all the
operations explicitly and forward the calls to the aggregated components.
This is an error-prone task. Inheritance allows all the inherited operations
available transitively without necessarily declaring them. However,
inheritance provides only a compile-time extension. Second, declaring
operations at the interface of the aggregating component results in fixing the

3 The pseudo variable selfis called this in C++ and Java, and current in Eiffel.
4 The Command pattern [10] can be considered more suitable in implementing components

with changing interfaces. This pattern provides a limited reflection on messages.
Reflection is discussed in subsection 2.2.7.

www.manaraa.com

38 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

number of operations that a component can provide. Therefore, the
operations of a component cannot be easily extended at run-times. Finally,
the aggregated components cannot access the aggregating component
directly by invoking on self. Although the pseudo variable self can be
simulated in the implementation of a component, the programmers may have
to deal with two inconsistent pseudo variables: one defined for the
components and the other defined by the implementation language, such as
Java.

2.2.6 Delegation

Delegation is introduced as an alternative to inheritance [11]. In
delegation, if a component cannot respond to a particular request of its
client, then it delegates this request to one or more designated components.
One of the designated components may execute the request on behalf of the
delegating component. Further, the designated component can refer to the
delegating component by calling on the pseudo variable self. Delegation is
similar to inheritance; the designated component behaves like the super-class
of the delegating component. Delegation can extend the interface of a
component if the component delegates the requests to a another component,
which extends the interface6 • Delegation eliminates the need of declaring the
interface operations explicitly. Further, compared to aggregation, delegation
provides the pseudo-variable self so that the designated components can
refer to their delegating component by invoking on self.

An additional advantage of delegation is to share a common behavior at
the component level; the shared component may a have state, which can
affect the shared behavior. Assume for example that in a distributed system
multiple components provide the operation checkSecurity. All these
components share the same implementation of checkSecurity. The
implementation of checkSecurity refers to an access-list to verify
invocations. It is desired that this access-list be encapsulated by the
operation checkSecurity. Delegation can easily implement such a
requirement. The shared designated object should then implement the
operation checkSecurity and encapsulate the access-list. It is not easy to
implement such a mechanism using inheritance because the operation
checkSecurity must then be inherited from the super-class and the super-

5 Inheritance suffers from the same problem. In strongly typed languages, generally a
compile-time error is generated if, say component C j is replaced by an instance of its sub­
class, say component Cz, and if an extended operation defined in C2 is invoked on C j • To
eliminate these errors, generally typecasting is used.

6 This is only possible if the adopted language does not generate typing errors, when the
new operation is called.

www.manaraa.com

GUiDELINESS FOR IDENTIFYING OBSTACLES 39

class must also encapsulate the access-list. Classes are not optimized for
storing and encapsulating state. This is termed as the sharing behavior with
state problem [2]. Unfortunately only a few languages support delegation
[18].

One disadvantage of current implementations of delegation is that they
cannot enable or disable the delegation process, for example, based on a
condition of the delegating component. This may be necessary if the
implementation of a component has to be adapted based on certain
conditions. For example, in distributed systems a conditional delegation
mechanism could be useful in adapting the protocols based on the quality of
service requirements. Although the Bridge and Strategy patterns provide a
similar functionality, they are aggregation-based and therefore do not
provide the advantages of delegation as discussed in this subsection. In a
conditional delegation mechanism, the designated components could
implement the alternative protocols, and the condition of the delegating
component would enable the designated component which implements the
most suitable procol. This is called the lack of support for dynamic
composition problem.

2.2.7 System Interface and Layering

The interface of middleware systems must be fixed to achieve
compatibility and portability. As stated in the previous sections, however,
the application domain of the middleware technology grows steadily.
Generally, this requires extensions to the middleware services. We term this
as the unmatched system functions problem.

The application programmer may deal with this problem in three ways:

• Implementing the service at the application level. This approach causes a
repetitive re-implementation of the common service for every similar
application.

• Implementing the service as an application service. Existing middleware
systems provide certain application services that can be explicitly called
by applications if needed. These application services are defined at the
same level as applications. This approach, is therefore, not desirable if
the service must be transparent to the application program.

• Implementing the service within the middleware. This approach is
difficult to realize because generally middleware systems are closed
systems and do not provide facilities to extend them.

One of the reasons why middleware systems are closed systems is due to
transparency of certain services. Middleware systems are organized in layers

www.manaraa.com

40 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

and layers provide transparency in that certain aspects of a layer are invisible
to the "higher-level" layers. Typical examples are location transparency,
replication transparency, failure transparency, etc.

Although transparency of certain services eases application
programming, it works against extensibility for two reasons: First, to be able
to implement new transparent services, it must be possible to introduce new
transparent layers into the system without re-defining the existing ones. For
example, certain systems may require a dedicated transparent security layer,
which might not be foreseen before. In case of a closed middleware system,
however, this is not possible. Second, to be able to cope with the evolving
application demands, it must be possible to adapt the services of a layer in a
controlled manner. Transparency of certain aspects, however, may hinder the
adaptation of certain services.

In the literature reflective systems are proposed to "weaken
transparency" in a controlled manner [19]. A reflective system is a system
which incorporates models representing (aspects of) itself. This self­
representation is casually connected to the reflected entity, and therefore,
makes it possible for the system to answer questions about itself and
supports actions on itself. Reflective computation is the behavior exhibited
by a reflective system.

The term reflection was introduced by [16] as a technique to structure
and organize self-modifying procedures and functions. In [12] reflection was
applied within the context of object-orientation. A considerable amount of
work has been done in reflection techniques, for example, in concurrent
computation, distributed system structuring and middleware, programming
language design, real-time systems, and in network design [20][6].
Conventional component models do not provide adequate support for
reflective system development. This is termed as the lack of support for
reflection problem.

Recently, several attempts have been made to provide message reflection
within a middleware. The so-called portable interceptors can be inserted into
a middleware, which enables the programmers to access, test and modify the
messages. Reflective computation is an active research area and there are a
number of open questions:

® Which aspects of components must be reflected? For example the
portable interceptors in CORBA are only defined for a limited set of
interactions within the middleware. It is currently not clear how many
interceptors are necessary at which levels. Moreover, intercepting
provides only a limited degree of reflection.

s What are the suitable abstraction techniques? How can reflection be
managed? For example the main abstraction of portable interceptors is

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 41

the representation of messages. This provides only a limited reflective
capability.

• What are the suitable techniques to specify and enforce causal
connections among the reflective levels? For example in the portable
interceptor approach, this is basically defined at the level of
manipulating messages.

• What is the affect of evolution to the reflective part of components? Can
reflective parts easily evolve as well?

• What kinds of compositional mechanisms must be provided at the
reflective layer? This is an important issue if multiple dependent
properties are reflected. Since these properties are related to each other,
suitable compositional mechanisms must be provided at the reflective
level as well.

e If a certain property is shared among multiple components and/or levels,
how can this property be reflected?

Especially the last three items pose problems and can not be solved
adequately using the current reflection techniques. For example, in the
portable-interceptors approach, it is not clear how the processing of reflected
messages at the reflective-level can be composed. Consider for example the
quality of service properties of a typical middleware system. These
properties generally refer to multiple components in multiple layers and
therefore cannot be easily captured by reflecting a single message,
component or a layer.

3. THE COMPUTER SCIENCE SUB-DOMAINS

Based on the assumptions given in the previous section, we have selected
the following sub-domains: application generators, concurrency and
synchronization, constraint Systems, control systems, distributed processing
and real-time systems. Obviously, practical software systems may include
several of these sub-domains.

3.1 Application Generators

Figure 3 depicts a typical application generator (A G) architecture. AGs
are used to construct software in a particular domain. AGs usually adopt a
high level specification language in which the application can be described.
The application domain needs to be well understood to allow applications to
be described at a higher level of abstraction. AGs incorporate some default
information in their application domains and thereby let the programmers

www.manaraa.com

42 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

concentrate on the specific aspects of their programs. Based on the user's
specifications and default knowledge, AGs construct the application in an
executable (general purpose) language.

Application J Parser H
specification -l ____ ---'

Code
generator

Default
application
information

Figure 3: A block diagram of application generators

Executable
code

In middleware systems, AGs are used to generate stubs; stubs are
software modules that link application-level functions to the functions of the
middleware layer in a transparent manner.

In principle, AGs can be used in distributed systems as a general
mechanism to hide certain implementation aspects of applications. For
example, the application programmer may express his/her specific security
needs in a directive file. A suitable AG can interpret this specification and
bind the application to some dedicated services in a transparent way. The
subsections 3.1.1 and 3.1.2 describe the important aspects of AGs.

3.1.1 Problem Domain Specification

The specification language of an AG must be expreSSIve enough to
describe all the important features in its domain.

Problem domain specification and implementation by itself is a complete
analysis and design problem. Therefore, depending on the domain, the
designer of an AG may suffer one or more of the problems listed in this
chapter.

Secondly, while designing and reusing AGs, designers may experience
the arbitrary composition problem7, which is explained in the following:

Assume for example that we would like to generate the interaction
protocol of a component from a specification language. If the protocol has
various different versions and/or the future extensions are likely to occur, we
may want to have composition mechanisms for this specification language.
Reusing and composing these specifications using the standard class
inheritance or component composition mechanisms may not be appropriate

7 This is similar to the arbitrary inheritance problem which was described in [2][3].

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 43

since specifications may include specific constructs which cannot be
supported by the standard inheritance and composition mechanisms.

3.1.2 Code Generation

The code generator requires that all the necessary details be provided in
the input specifications. The generated code must be complete enough to
execute on current middleware platforms in an efficient way. This requires
realizable_and precise_models.

On the other hand, it is not desired to overload the programmer with too
many details. Assume, for example that we like to optimize the remote
accesses by considering the application characteristics, such as access rates,
size of data, as much as possible. If the user does not give any details, it may
be difficult for the AG to generate an efficient code. In general, the
performance problem of the generated application cannot be improved only
by the compiler of the generated code. There is a need for problem-domain
specific optimization techniques, which have to be provided by the code
generator of the AG.

3.2 Concurrency and Synchronization

Concurrent processing can be defined as a parallel or time-multiplexed
execution of one or more operations, which can be, but are not necessarily,
data-dependent. Whenever the execution of one operation is started before
the execution of another operation is completed, the two executions are
concurrent. The basic aspects in designing concurrent systems are presented
in subsections 3.2.1 and 3.2.2.

3.2.1 Creating Concurrency

This can be done either explicitly through special constructs (e.g. fork
[8]), or implicitly, as the result of certain message passing semantics. For
example, when applying asynchronous message passing, the thread that
initiates the call proceeds concurrently with the thread executing the call.
The creation of new active objects is an additional possibility for creating
concurrency.

Although some methods and programming languages provide a variety of
message sending constructs, in general the semantics of message sending are
fixed and cannot be tailored to particular needs. In section 2.2.4, this was
defined as fixed message passing semantics problem.

www.manaraa.com

44 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

3.2.2 Synchronization of Concurrent Executions

The activities of concurrently executing processes can be totally
independent, but they may also interact at certain times. This interaction may
involve the exchange of data, such as producer-consumer interaction, or can
be pure synchronization between two or more processes, often with the aim
of safely sharing resources.

Three approaches for integrating concurrency and component models can
be distinguished:

" Orthogonal approach: Components and threads are completely
independent, creation of threads and synchronization are achieved
through special statements, such as the conventional forks and
semaphores.

II Homogenous approach: Every component is considered to be active, and
takes care of its own synchronization; components are the unit of
concurrency.

@ Heterogeneous approach: Adopts both passive and active components.
Passive components do not perform any synchronization on incoming
requests.

The homogeneous approach is well integrated with the component
model. However, the combination of component composition with
synchronization introduces new problems8• This is termed as the composition
versus synchronization problem.

Assume for example that the message invocation performance of a
middleware system has to be improved by dynamically switching between
various protocols. For instance, if a client component invokes on its server
only once, then relatively, the TCP/IP protocol is considered as the most
efficient implementation. However, if the same client component starts to
invoke on multiple servers repeatedly, then the multicast protocol is
considered the more efficient. Studies show that [15] in current middleware
systems, however, switching from one protocol to the other at run-time is
generally not possible. This is because, the synchronization action is
distributed to various components and layers. As a result, new protocols
cannot be easily incorporated at run-time without replacing a considerable
part of the middleware system.

8 This is similar to the inheritance anomaly problem [13]. An extensive discussion of these
anomalies is given in [4].

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 45

3.3 Constraint Systems

In constraint systems applications are modeled using components and
relations between these components that need to be enforced. These
relations, in general, are constraints on the attribute values of the
components and expressed in formulas. As constraints are often related to
each other, changing the value of one attribute can have a considerable effect
on the attributes of other components.

Assume for example that a distributed geographic information system has
to be designed. This system allows creation, modification and deletion of
geographic data by multiple users. Geographic data is constraint by the
topology. In addition, the physical characteristics the artifacts, such as
houses and roads have to be considered. The system has to maintain the
constraints when certain artifacts are created or modified.

Subsections 3.3.1 to 3.3.3 present the important aspects of designing
constraint systems.

3.3.1 Constraint Enforcement Strategies

The constraint enforcement system must determine which component's
attribute needs to be changed when a constraint is violated. Assume that the
constraint is expressed as x + y = z. Here, if z is the independent variable,
then the constraint can be enforced by updating the dependant variables x
and y. If, however, none of the variables are independent, then the problem
becomes even more complicated, since the constraint system must adopt a
more complicated constraint enforcement strategy.

Since constraint enforcement among components can be defined as a
coordination activity, components must represent the coordinated behavior
explicitly. The Observer and Mediator patterns [10] for example, can be used
to detect a change and enforce the constraints, respectively. The Mediator
pattern encapsulates the implementation of the constraint enforcement
strategy.

The designers can implement the constraint enforcement strategy at the
application, application service or middleware levels. Here, the issues to be
concerned are similar to the ones that were discussed in 2.2.7.

An important question here is how to implement the constraint
enforcement strategy in a reusable and extensible manner. Generally,
constraint enforcement is implemented by sending the necessary messages to
the participating components. For example, the interaction pattern can be
implemented by using the Mediator pattern. The interaction is mainly based
on message send semantics, where the mediator component transmits
messages one by one to the so-called colleague components. We consider

www.manaraa.com

46 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

the message send model as being too low-level, because it can only specifY
communications that involve two partner components at a time and its
semantics cannot be easily extended. Mechanisms like inheritance,
aggregation and delegation only support the construction and behavior of
components but not the abstraction of communication among components.
These mechanisms therefore fail in abstracting patterns of messages and
larger scale synchronization involving more than just a pair of components.
For example, it is not trivial to extend the mediator component for the
purpose of extending the constraint enforcement strategy. This is termed as
the lack of support for coordinated behavior problem.

3.3.2 Conflicting Constraints

Just as each constraint can be related to multiple components, each
component can be related to multiple constraints. This can result in
conflicting constraints when the value ranges resulting from the constraints
are not overlapping. One solution is to assign priorities to constraints and let
the constraint with the highest priority be enforced.

If the constraint system is implemented as an application service or
provided transparently by the middleware system, conflict resolution
strategies may not be replaced or extended easily. This was termed in section
2.2.7 as the unmatched svstem functions problem.

3.3.3 Reuse of Constraints

The current component models do not support the use of constraints as an
explicit feature. If constraints are added to components as attributes, then it
may be difficult to reuse and extend them by using the current composition
mechanisms. In section 3.1.1, this was termed the arbitrary composition
problem.

Note that if the constraint system has to be generated automatically, then
it is a special kind of application generator and includes the aspects of
application generator design.

3.4 Control Systems

As shown by Figure 4, a (feedback) control system includes sensors and
actuators to influence (or control) the behavior of the controlled system.
Each measured value of the controlled system is compared with its
associated desired value and based on the discrepancies the parameters for
the related actuators are calculated and engaged. The controlled system may
be influenced by several other sources besides the control system. In

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 47

addition to the controlled system, modeling these sources and reacting to
them properly can dramatically improve the quality of control. In short, a
control system usually adopts models for the controlled environment,
actuators, sensors and the controlling algorithms. Note that if a software
system controls another software system, all the elements of a control system
are implemented in software.

Subsections 3.4.1 to 3.4.3 present the important aspects of designing
control systems.

3.4.1 Control Specifications and Algorithms

A large diversity of systems can be controlled, and therefore, controlled
systems can have arbitrary complexity. Depending on the models associated
with the controlled system, the analysis and design of a control system may
include one or more of the problems that are identified in this chapter.

Assume for example that the quality of service parameters of a
distributed system has to be controlled using the architecture given in Figure
4. Here, the model of the controlled system must express the actual quality
of service parameters of the distributed system under consideration. The
reference model must be expressive enough to represent the desired
parameters. The controlling algorithms must have the knowledge of adapting
the distributed system in such a way that the properties are adjusted in the
right manner. The actuator must have the capability of executing the
adjustments.

Model of the
controlled

system

Figure 4: Block diagram of a control system

www.manaraa.com

48 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

3.4.2 Sensing, Monitoring and Feedback

The control system must sense, monitor and control the controlled
system. There is a meta-level relation between the controlled system and the
control system. To effectively represent these meta relations, the underlying
object-oriented model must provide a reflection mechanism.

Assume for example that the quality of service parameters of a
middleware system has to be controlled. In this case, the controlled system is
the middleware and the control system is responsible for the quality of
service management. The quality of service parameters of a middleware can
be adjusted, for example, by reconfiguring the middleware components. To
be able to control the middleware, however, certain characteristics of the
middleware must be measurable by the control system. In case of a closed
middleware system, measuring the necessary parameters maybe too difficult
or even impossible. In section 2.2.7, this was termed as the lack of support
for reflection problem.

3.4.3 Coordinated Behavior

Complex and large control systems often consist of several distinct units
such as controlling algorithms, actuators, sensors, and/or low-level sub­
control systems. Depending on the architecture and/or controlling
algorithms, the units of a control system coordinate together to keep the
controlled system consistent with respect to its pre-defined specification.

As an example, consider again the implementation of the quality of
service management system. Here, the measurements must be collected from
the relevant and possibly distributed components. Similarly, adjustments
must be realized on these components. This requires implementation of well­
defined interaction mechanisms. If the interactions must be extended, the
lack of support for coordinated behavior problem explained in section 3.3.1
can be experienced.

3.5 Distribution

A distributed computer system consists of multiple, cooperating,
autonomous computer systems (nodes) that are interconnected by a
communication network, and a middleware system to integrate such an
interconnected system into a logical entity. In subsections 3.5.1 to 3.5.8, we
present eight important aspects of distributed system design:

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 49

3.5.1 Remote Invocations

In a distributed system, components are scattered over the nodes of the
system, and components on different nodes may need to communicate using
the so-called remote invocations. The required semantics of remote
invocations may differ according to the circumstances, although the remote
procedure call model is used most frequently. In the remote procedure call
model, the client component waits until the server component explicitly
returns the result of the call. The remote procedure call semantics can be too
restrictive for certain applications. In section 2.2.4, this was termed as the
fixed message passing semantics problem.

3.5.2 Transparency

It is generally claimed that most of the activities within a distributed
system must be transparent to the users/programmers of the system. The
various possible sorts of transparency that can be added to distributed
systems are summarized below:

Access Transparency: Whether or not there is any perceived difference of
procedure in using a local resource or a remote resource.

Replication Transparency: Whether or not replication of components is
visible.

Location Transparency: Whether or not access to (or control of) a
resource is dependent on that resource of being at a particular location, held
exactly one location, or distributed over several locations.

Failure Transparency: Whether or not failures that occur in system
components affect the overall functioning of the system.

Although transparency makes it easy to write programs, there are some
negative consequences, such as performance. In case of remote sharing, for
example, performance can be negatively affected if topology information is
not taken into account. Similarly, efficient and proper exception handling
and increasing availability require more or less topology information.
Moreover, in section 2.2.7, we discussed the negative affects of transparency
to extending the services provided by the middleware system. Within this
context two problems were discussed: First, the unmatched system functions
problem, which can be experienced if the services of the middleware do not
match the needs of the applications. Second, the lack of support for
reflection problem, which can be experienced if the transparent middleware
services are required to be modified or new services have to be introduced.

www.manaraa.com

50 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

3.5.3 Resource Sharing

For sharing resources, generally a client-server model is used; a (server)
component encapsulates the shared resource and serves requests from other
(client) components. This model is sufficiently supported by the current
component models.

3.5.4 Distributed Algorithms

Distributed algorithms are frequently required in distributed systems, not
only for the implementation of middleware system level functions, but also
for the realization of application level software systems. A distributed
algorithm involves a number of components that exchange messages with
each other.

In current component models, interaction code is likely to spread over all
the participating components. In section 3.3.1, we discussed the difficulties
in reusing and extending interaction code among components. This was
referred to as the lack of support {or coordinated behavior problem.

3.5.5 Distributed Concurrency Control

In a distributed system, data is partitioned and/or replicated over the
nodes of the system, and commonly shared by multiple nodes. One of the
major problems is to keep the data consistent. The most common mechanism
to address this is the transaction mechanism. To guard data from
inconsistencies in the presence of hardware or system failures, or when a
certain sequence of actions have to be executed in an indivisible way, then
the transaction mechanism can be adopted. A transaction is a sequence of
events that are serializable and indivisible.

In the literature, many different transaction implementation techniques
are presented. Implementations generally differ from each other with respect
to their serialization and/or recovery characteristics. The suitability of an
implementation technique may depend on the application, system and/or the
data structure. It is therefore difficult to select a single implementation as a
middleware service for all applications. In section 2.2.7, this was termed as
the unmatched system functions problem.

If the application programmer requires choosing the implementation of
middleware transaction services, and if the transaction services are
transparent, the lack of support {or reflection problem can be experienced. If
the middleware has to automatically select the best transaction
implementation in a transparent way, then this is a control system design
problem as discussed in section 3.4. In this case, defining the right model for

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 51

the controlled middleware system and the right criteria for selecting the
optimal transaction implementation can be a difficult task.

3.5.6 Recovery

Recovery is a facility for ensuring that no information is lost even in the
occurrence of software and hardware failures. To cope with hardware
failures, there must be a so-called stable storage, which is guaranteed to
remain unaffected by failures. Recovery is usually part of the transaction
mechanism; when a transaction succeeds, the new state is guaranteed to be
saved, when the transaction is aborted half-way, the system is recovered to
the state before the start of the transaction. The problems that designers may
experience are similar to the ones oftransactions.

3.5.7 Security

The security of an information system becomes more critical especially
when the processing nodes are distributed. Access-control lists and
capabilities are two well-known techniques [9]. Cryptographic techniques
can be integrated with the system to reduce the vulnerability [14]. Security
mechanisms must be superimposed upon other distributed system functions.
Generally, this means introducing transparent services to the middleware. In
section 2.2.7, this was defined as the lack of support for reflection problem.

3.5.8 Layered Communication Protocols

Distributed systems, in general, are structured in terms of layers.
Functionally, each layer communicates with its peer-level layer, although
physical data exchange occurs with the adjacent layers. In the section 2.2.7,
the problems associated with designing layers were identified as the
unmatched system functions and the lack of support for reflection problems.

3.6 Real-time

A real-time (R T) system is a system that is required to respond to
external events within a predetermined time interval. RT systems are often
classified into hard- and soft real-time systems. In hard-RT systems,
violation of the time constraints will result in serious, possibly catastrophic
damage to the system and its environment. Soft-RT systems aim at fulfilling
the time constraints as much as possible. One class of soft-RT systems are
statistical RT systems where average response times are required. For hard-

www.manaraa.com

52 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

RT systems several analysis techniques have been developed to guarantee
the timely behavior of the system under all circumstances.

In subsections 3.6.1 to 3.6.3, the important aspects of RT systems design
are presented ..

3.6.1 Real-time Specifications

In current component models, RT specifications may conflict with the
composition mechanism. In case components with real-time behavior are
required to be extended or modified through component composition, the
designers may be obliged to redefine some or all of the features of the
predefined components although this may be intuitively unnecessary. This is
referred to as the composition versus RT specifications problem9 •

R T specifications can also be defined for the coordinated actions of
components, requiring an explicit representation of component coordination.
The problem that is related to coordination was discussed in subsection 3.3.1
and was termed as the lack ofsupport for coordinated behavior problem.

3.6.2 Dynamicity in RT Specifications

The current RT specification techniques lack flexibility in the association
of RT specifications to components. In general, only the server component
associates RT specifications with its operations, which are fixed during the
life time of this component. Especially for soft-RT systems, it may be
desirable to select an optimal RT specification for an operation from various
alternatives. Moreover, client components are also not able to define time­
intervals on their calls to server components. These are similar to the
problems that were discussed in subsections 2.2.3 and 2.2.6 and were
respectively termed as the multiple-views and lack of support for dynamic
composition problems.

3.6.3 Temporal Behavior Analysis

Several algorithms for determining the temporal behavior of a RT system
have been defined. As the problem itself is, at least NP-complete, the useful
algorithms are heuristic algorithms determining an upper bound. There
problems were discussed in the literature and termed as schedulability
analysis. Efficient algorithms have to be defined for the analysis of RT
component models. Other important aspect for soft-RT systems is exception
handling in case the timing constraints can not be fulfilled.

9 This is similar to the real-time specifications inheritance anomaly problem [4]

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 53

4. CONCLUSIONS

Constructing software systems from components has several advantages
such as managing complexity and run-time adaptability. There are, however,
a number of obstacles that software engineers may experience while
designing systems from components. In general, it is possible to classifY
these obstacles as lack of expression, decomposition and/or composition
problems. In this chapter, these general problems are further specialized into
11 problems and are classified according to the aspects of domains of
applications. By using the guidelines presented in this chapter, the software
engineers may identifY the potential problems first by identifYing the
domains of their applications, and then by considering the aspects of each
domain.

Various techniques have been introduced in this book to overcome some
of the obstacles presented in this chapter.

The composition and decomposition problems in design are addressed by
the architecture design methods presented in chapters 3, 4 and 5.

The lack of expression is a general problem and addressed by parts 2 and
3 of this book. Every chapter addresses this problem within a specific
problem context. For example chapter 6 presents a set of abstractions which
are capable of expressing message-oriented architectures, chapter 7 presents
a logic meta-programming language to capture architectural constraints,
chapter 9 presents basic language mechanisms to express a large category of
component composition mechanisms, etc. Chapters 10, 11 and 12 aim at
enhancing the expression power of current languages by providing effective
mechanisms for separation and composition of concerns.

The arbitrary composition problem is not directly addressed in this book.
In our related research activity, we addressed this problem partially within
the context of designing parser generators. We introduced the so-called
grammar inheritance mechanism, in which sub-grammars may be inherited
from the super-grammars [1]. This technique is especially suitable to reusing
the grammars of specifications.

ACKNOWLEDGEMENTS

This research has been supported and funded by various organizations
including Siemens-Nixdorf Software Center, the Dutch Ministry of
Economical affairs under the SENTER program, the Dutch Organization for

www.manaraa.com

54 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Scientific Research (NWO, 'Inconsistency management in the requirements
analysis phase' project), the AMIDST project, and by the 1ST Project 1999-
14191 EASYCOMP.

5. REFERENCES

1. M. Ak~it. R. Mostert and B. Haverkort. Compiler Generation Based on Grammar
Inheritance. Memoranda Informatica 90-07, University of Twente, February 1990.

2. M. Ak~it and L. Bergmans. Obstacles in Object-Oriented Software Development. In
Proceedings OOPSLA '92, ACM SIGPPLAN Notices, Vol. 27, No. 10, pp. 341-358,
October 1992.

3. M. Ak~it, B. Tekinerdogan, F. Marcelloni and L. Bergmans. Deriving Object-Oriented
Frameworks from Domain Knowledge. In Building Application Frameworks: Object­
Oriented Foundations of Framework Design, M. Fayad, D. Schmidt, R. Johnson (Eds.),
John Wiley & Sons Inc., pp. 169-198, 1999.

4. L. Bergmans and M. Ak~it. Composing Synchronisation and Real-Time Constraints. In
Journal of Parallel and Distributed Computing, Vol. 36, No.1, pp. 32-52, 1996.

5. A. Burggraaf, Solving Modelling Problems ofCORBA Using Composition Filters. MSc.
thesis, Dept. of Computer Science, University of Twente, August 1997.

6. P. Cointe (Ed.). Meta-Architectures and Reflection. Springer Verlag LNCS 1616, St
Malo, May 1999.

7. S. de Bruijn. Composable Objects with Multiple Views and Layering. MSc. thesis, Dept.
of Computer Science, University of Twente, March 1998.

8. J. B. Dennis and E. C. van Hoom. Programming Semantics for Multiprogrammed
Computations. In Communications of the ACM, Vol. 9, No.3, pp. 143-155, March 1966.

9. R. S. Fabry. Capability-Based Addressing. In Communication of the ACM, Vol. 17, No.
7, pp. 403-412, July 1974.

10. E. Gamma, R. Helm, R. Johnson and 1. Vlissides. Design Patterns: Elements of Reusable
Software. Addison Wesley, 1995.

I I. H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object
Oriented Systems. In Proceedings of OOPSLA '86, ACM SIGPLAN Notices, Vol. 21,
No. 11, pp. 214-223, November 1996.

12. P. Maes. Concepts and Experiments in Computational Reflection. In Proceedings
OOPSLA'87, ACM SIGPLAN Notices, Vol. 22, No. 12, pp. 147-155, December 1987.

13. S. Matsuoka and A. Yonezawa. Inheritance Anomaly in Object-Oriented Concurrent
Programming Languages, In Research Directions in Concurrent Object-Oriented
Programming, G. Agha, P. Wegner and A. Yonezawa (Eds.), MIT Press, Cambridge,
MA, pp. 107-150, October 1993.

14. S. Mullender and A. Tanenbaum. Protection and Resource Control in Distributed
Operating Systems. In Computer Networks, No.8, pp. 421-432,1984.

15. M. Sinderen (Ed.) Application of Middleware for Services in Telematics (AMIDST)
Project, CTIT, http://amidst.ctit.utwente.nll, 1999.

16 B. C. Smith. Reflection and Semantics in a Procedural Language. MIT-LCS-TR-272,
Mass. Inst. of Tech. Cambridge, MA, January 1982.

17. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison­
Wesley, 1998.

www.manaraa.com

GUIDELINESS FOR IDENTIFYING OBSTACLES 55

18. D. Ungar and R. B. Smith. Self: The Power of Simplicity, In Proceedings OOPSLA'87,
ACM SIGPLAN Notices, Vol. 22, No. 12, pp. 227-242, December 1987.

19. Y. Y okote. The Apertos Reflective Operating System: The Concept and Its
Implementation. In Proceedings a/the OOPSLA'92, ACM SIGPLAN Notices, Vol. 27.
No. 10, pp. 414-434,October 1992

20 A. Yonezawa (Ed.). Reflection and Meta Level Architecture. Proceedings of IMSA'92,
Tokyo, November 1992.

APPENDIX DEFINITION OF THE OBSTACLES

@ Arbitrary composition: was defined in subsection 3.1.l as the difficulty
in composing components if some or all aspects of components are
generated from specifications and if the specifications cannot be
composed by using the composition mechanism of the component
model. This problem can be experienced mainly in designing application
generators and constraint systems.

It Composition: was introduced in subsection 1.2 as the difficulty in
creating new components by reusing simpler components. Effective
composition demands two complementary characteristics from the
component model. First, it requires as much as possible to reuse the
existing components without modifying them. Second, the adopted
composition mechanism must be suitable in utilizing the existing
components in creating new components.

<II Composition versus RT specifications: was defined in subsection 3.6.1 as
the difficulty in reusing or extending RT specifications of components.
This problem can be experienced in designing components with RT
behavior.

s Composition versus synchronization: was defined in subsection 3.2.2 as
the difficulty in reusing or extending synchronization code of
components. This problem can be experienced in designing concurrent
components with explicit synchronization.

til Decomposition problem: was introduced in subsection 1.2 as the
difficulty in defining autonomous components in solving a given
problem due to the complexity of the problem.

s Excessive type declarations: was defined in subsection 2.2.2 as a result
of the necessity to declare a separate type module for every consistent
composition of components.

G Fixed message passing semantics: was defined in subsection 2.2.4 as the
difficulty of defining and reusing tailored message passing semantics of
interacting components.

www.manaraa.com

56 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

• Lack of expression power: was introduced in subsection 1.2 as the
difficulty in expressing software directly by using the features of the
adopted language.

• Lack of support for coordinated behavior: was introduced in subsection
3.3.1 as the difficulty of representing and reusing coordination among
components especially if the coordination is implemented as multiple
messages.

• Lack of support for dynamic composition: was introduced in subsection
2.2.6 as the difficulty of adapting composition structures (such as
inheritance or delegation) at run-time.

• Lack of support for reflection: was introduced in subsection 2.2.7 as the
difficulty of redefining the primitive or transparent features of the
system.

• Multiple views: was introduced in subsection 2.2.3 as the difficulty of
adapting the interface of a component based on its context.

• Sharing behavior with state: was introduced in subsection 2.2.6 as the
difficulty of sharing a common behavior among components if the
behavior is affected by a common state.

• Unmatched system functions: was introduced in subsection 2.2.7 as the
mismatch of application needs and the functions provided by the system
layer.

www.manaraa.com

PART 2

ARCHITECTURES

www.manaraa.com

Chapter 3

COMPONENT-BASED ARCHITECTING FOR
DISTRIBUTED REAL-TIME SYSTEMS

How to achieve campasability?

Dieter K. Hammer
Department o/Computing Science, Eindhoven University o/Technology, P.o. Box 513, 5600
MB Eindhoven, the Netherlands. email .. hammer@win.tue.nl

Keywords: Architecture, architectural views, components, composability, dependability,
design space, design method, distributed real-time systems, embedded
systems, emergent properties, interfaces, non-functional constraints,
stakeholders, system behavior

Abstract: In systems- and software architecting, architecture can be viewed as a high­
level design that supports the construction ofICT-systems. Starting from a list
of general requirements, the first part of this chapter gives an overview of the
dimensions of such· a design. In addition, the various, often contradicting,
architectural views that are relevant for the various stakeholders are discussed.
Special emphasis is given to the modeling of the system behavior and the
dependability constraints. The second part of this chapter summarizes the
requirements that binary components must fulfill in order to be composable in
the context of dependable distributed real-time systems. Thereby, the emphasis
is on timeliness and reliability. It is argued that in order to achieve
composability, resource requirements and non-functional properties are of
equal importance as functionality. In addition, the architectural styles that
govern the interaction of components with their environment must be
specified. A method for constructing the collective behavior of a set of
components and achieving composability is sketched and demonstrated by
means of an example.

www.manaraa.com

60 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

1. THE MANY ASPECTS OF AN ARCHITECTURE

Architectures are increasingly used to guide the development and
production of complex industrial ICT -products and to improve the related
decision processes. Architectures play an important role in balancing the
demands of the market and the customers, the technical solutions and the
characteristics and capabilities of an organization as e.g. described in [8]. It
is also recognized that different stakeholders (like development-, production
and service engineers, development-, product- and production managers,
sales people and users/customers) have different needs and consequently use
different views on an architecture.

In the literature as well as in practice, there is, however, no commonly
agreed view on these issues in terms of the definition of an architecture, the
description and evaluation of an architecture and the architecting process.
The main problems regarding the concept of an architecture can be
summarized as follows:

a) Current architectures are often developed in an ad-hoc way. As a
consequence, the system development process is time-consuming and not
flexible.

b) Architectures are often developed for single systems and do not well
support the variety associated with system families and product
platforms.

c) Architectures are often defined without giving enough attention to the
product development process. In particular in the upper lifecycle phases
of rCT -products, i.e. in the communication process with customers and
users, the concept of an architecture is vague and ambiguous.

d) Current architectures concentrate too much on one particular use
(system-, hardware- and software design, system configuration, etc.) and
do not support multiple consistent views that support the activities of the
various stakeholders mentioned above.

e) Present architectures concentrate too much on the structure of the system
and do not adequately deal with the dynamic aspects, i.e. the behavior.
The emphasis is on the modularization of the system and the definition of
the interfaces. Even if the various interaction channels are modeled, there
are no restrictions of the actual interaction patterns that can occur at
runtime.

f) There is not enough attention for the non-functional aspects of an
architecture like dependability (performance, timeliness, reliability,
availability, safety, security and robustness as defined in [21]) and other
X-abilities (modularity, composability, scalability, maintainability,
adaptability, extensibility, openness, interoperability, portability,

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T SYSTEMS 61

reusability, etc.). Since we also miss adequate development
methodologies that support the design of these system dimensions during
all development phases, these considerations enter the construction of an
ICT-system often only during the implementation phase.

g) Current architectures do not support requirements tracing, i.e. they do not
support a mechanism to document which architectural component,
relation or constraint implements which requirement and vice versa. The
same problem occurs for the tracing between the features of an
architecture and their implementation.

Section 1 of this chapter tries to identify the issues that are important for
the development of an architecture and to define relevant research questions.
The first two subsections deal with the definition and the purpose of an
architecture. Subsection 1.3 introduces a number of general starting points
for the design of an architecture and elaborates on the modeling of the
behavior of ICT-systems. The relevant dimensions of an architecture are
discussed in subsection 1.4. Subsection 1.5 identifies the most important
stakeholders of an architecture and summarizes the corresponding
architectural views and their relation with the various design dimensions.

Section 2 discusses the requirements for achieving composability in
Event-Triggered Architectures (ETA's). The emphasis is on dependable
distributed real-time systems and especially on timeliness and reliability. In
subsection 2.2, the extensions of the component interfaces necessary for
achieving composability are described. Subsection 2.3 summarizes the
development method underlying this discussion. Subsection 2.4 illustrates
the proposed approach by means of an example.

Finally, a number of conclusions are drawn and important directions for
future research are indicated in section 3.

1.1 What is Architecture?

The essence of architecting is the structuring of the construction and the
behavior of an ICT -system. In this way the possible design alternatives are
restricted and the various people involved in the design, production and
maintenance of an ICT-system are supported in making sensible decisions.
As in any design activity, also for defining architecture the key issues are
balancing of the often contradictory requirements, compromising between
extremes, and, of course, also elegance.

At the moment, there is no generally agreed definition of architecture. In
the literature, various often very general descriptions can be found. Rechtin
[26] e.g. defines an "overall system architecture" as the structure of a
system, its functions and its environment together with the structure of the

www.manaraa.com

62 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

process by which it will be built and operated. Dewayne and Wolf [25]
concentrate on software architectures and define them as a combination of
elements, form and rationale. Elements can be processing-, data- or
connecting elements. Form includes the importance of properties and
relationships, the constraints on architectural elements and the constraints on
the relations between architectural elements. Finally, the rationale gives
motivations for the choice of a particular architectural style, the choice of the
elements and the form. Bass et al. [1] define an architecture as "the structure
or structures of the system, which comprise components, the externally
visible properties of those components, and the relationship among them".

An architecture can be considered as a common high-level model or
design that supports the various disciplines and stakeholders in

a) taking design decisions in a multi-dimensional design space,
b) defining their designs in a multi-disciplinary environment and
c) communicating their solutions.

Note that not all parts of architecture need to be defined at the same level
of abstraction. Usually the architecture can be considered as high-level
design but parts like interfaces and protocols can even be defined at
implementation level. Of course, the different parts of architecture should fit
into one consistent framework. The level of abstraction of the architectural
model depends on the level of detail at which the various activities of the
early project phases have to be performed, e.g. on the envisaged degree of
concurrent engineering.

This chapter abstracts from the particular design or project to be
supported by architecture. In addition, no distinction is made between
systems- or software architecting.

Already Dewayne and Wolf [25] consider an architecture as one step in
the construction process of a system. Since the classical distinction between
an implementation-independent conceptual model (defining the what) and an
implementation model (defining the how) is obsolete, this construction
process is not considered in terms of a classical waterfall model (e.g.
requirements, architecture, specification, design and implementation) but as
a continuous process of top-down refinement. This view is more consistent
with the practice of e.g. object-based methodologies where components can
be identified at various levels of refinement and every component consists of
a specification and a design that identifies the sub-components and their
relations.

As already mentioned, most notions of an architecture concentrate too
much on the structure of a design and do not adequately deal with its
behavior. A typical example of this restricted view is given in an early paper

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 63

of Shaw [30] that concentrates on abstract data types. Dewayne and Wolf
[25] go one step further and distinguish between a process view that
concentrates on the data flow through the processing elements, a data view
whose emphasis is on the processing flow and the interdependence of
processing and data upon the interconnections between the processors. This
approach is very similar to the dataflow paradigm that can e.g. be found in
SA/SD (Structured Analysis/Structured Design) and some object-oriented
methods.

Only recent definitions like the one given by Bass et al. [1] pay equal
attention to structure and behavior. These authors define the architecture of a
program or ICT -system as "the structure or structures of the system, which
comprises software components, the externally visible properties of those
components, and the relationships among them". Thereby, relationship refers
to both the static interconnection between components by channels and the
dynamic interaction. Unfortunately, this approach to architecting is still not
widely used in industry.

1.2 What is Architecture Good for?

The overall aim of architecture is the improvement of the quality of the
ICT-system and its product development process. Key factors for the success
of a project are the emphasis on the early development phases, the
interdependence between product and process, and the interdisciplinary
nature of decision making by the architect(s) in cooperation with the various
stakeholders. In particular, an architecture has the following important
advantages:

a) It establishes a framework for satisfying the requirements.
b) It forms a technical basis for the subsequent refinement of the system.
c) It restricts the design alternatives by enforcing a particular architectural

style (e.g. a central or a distributed architecture, an event-driven or a
time-driven architecture, etc.) and taking important design decisions.

d) It supports requirements tracing, i.e. it provides a mechanism to
document which architectural component, relation or constraint
implements which requirement and vice versa.

e) In addition, it supports implementation tracing, i.e. the tracing between
the features of an architecture and their implementation.

±) It forms a basis for reducing risks by supporting the various activities that
have to be performed during the early development phases. Among the
most important are

An evaluation in order to ensure the consistency and quality of the
architecture,

www.manaraa.com

64 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

- a feasibility study in order to make sure that a system can be made
within the given constraints and

- an assessment of the threats and risks a project is exposed to.
g) It supports the answering of "what-if' questions that are e.g. related to

different uses of the product and its future evolution.
h) It forms not only a basis for designing a system but also for designing the

related engineering-, production-, service- and maintenance processes.
i) It forms the managerial basis for cost estimation, project management

and configuration management. In particular, an architecture should
support
- project planning,
- concurrent engineering in general,
- hardware/software codesign in particular,
- configuration management during the development phase and
- configuration selection and management with respect to the market

and the customers.
j) It forms an important basis for the reuse of components at the

architectural level.
k) It forms a common basis for the communication of the various

stakeholders of a system. Since these persons very often do not share a
common background or methodology, interdisciplinary decision making
is a key issue.

1.3 Modeling the System Behavior

As already mentioned, an architecture must be an integral part of the
development methodology of an ICT-system. Such a development
methodology should meet the following requirements [10]:

1. It should be based on uniform paradigms that can be used for the whole
design trajectory from the modeling of the process to be supported by the
system down to the implementation.

2. Equal emphasis should be given to the modeling of the static and the
dynamic structure of the system, i.e. the modeling of the components and
their interfaces as well as the behavior.

3. It should support the specification and verification of non-functional
constraints during all development phases.

A visualization of the above requirements is shown in Figure 1: it gives
an overall view of the five most important development steps of an ICT­
system together with the four most important architectural dimensions along

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 65

which the system must be refined. The development steps (not necessarily of
the project management phases) shown in Figure I are:

a) the modeling of the process to be supported!;
b) the design of an architecture of the system that has to support the process;
c) the design; and finally
d) the implementation of the system.

Structure Behavior

Functional properties Non-Functional properties

Figure 1: Uniform development paradigms for leT-systems

The four most important design dimensions shown in Figure I are:

a) The functional dimensions structure and behavior. The two double-arrow
lines indicate the (de)composition of the system in terms of components
and activities (see paradigms 1.3.1 and 1.3.2 below).

b) The non-functional dimensions dependability and other X-abilities. The
two triangles indicate the refinement of the non-functional part of the
specification (see paradigm 1.3.3 below). In addition, they indicate that

! Note that this process can either be a physical production process, an information
providing process, a logistic process, a service process or the process of using a particular
system.

www.manaraa.com

66 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

the verification of the non-functional system constraints should be done
at various levels of refinement (see paradigm 1.3.4 below). Ideally, the
specification and verification of the non-functional properties should be
performed simultaneously with the refinement of the functional ones, i.e.
the feasibility of the dependability and X-ability constraints should
already be checked during the early project phases and especially in the
architecting phase. The width of the triangles indicates the inaccuracy of
the analysis that decreases as more implementation details are known and
the estimates become better.

In order to fulfill requirements 1 to 3, four uniform development
paradigms (i.e. paradigms that can be used at all levels of refinement) are
proposed:

1.3.1 Component-based Modeling of System Structure

Components are usually application-oriented entities that usually come in
form of a set of modules or even complete frameworks. Szyperski defines a
component as a unit of composition with contractually specified interfaces
and explicit context dependencies only [31]. Although he states that "context
dependencies are specified by stating the required interfaces and the
acceptable execution platform(s)", he only considers the functionality of
components and does not explain what "acceptable execution platform"
means. In order to be useful for resource constraint software architectures,
this definition must be made more explicit. The purpose of this chapter is to
show how this can be done in practice.

Along the lines of Szyperski, components are considered as independent
units of deployment level, i.e. as binaries. The reason is that for source code
components a much larger environment must be specified: not only the
execution platform but also all code transformation tools (compiler, linker,
etc.), including their switches. This added complexity also implies that the
executables, resulting from the use of different sets of transformation tools,
should undergo an additional regression test.

1.3.2 ActivitieslTransactions for the Modeling of the System
Behavior

In order to meet requirement 2, the component-based paradigm needs to
be extended: to model the system behavior and to support dependability
analysis, the notion of an activity is introduced. An activity is a sequence of
causally related component interactions. It models all relevant execution
paths at a particular level of abstraction by a directed graph. In this graph,

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T SYSTEMS 67

the vertices are component operations (e.g. method calls) and the edges are
precedence relations.

Since the objects of a distributed real-time system are assigned to
different processors, activities may proceed from one processor to another
via synchronous or asynchronous interactions (e.g. remote procedure calls)
and have a system-wide scope. Activities are the units of concurrency and
several activities may coexist in a system. Activities may communicate and
synchronize via shared components like semaphores and shared data. Note
that asynchronous component interaction creates additional parallelism
because the called or newly created activity executes in parallel with the
calling one.

Transactions are then (part of) activities for which particular consistency
constraints hold. An important type of consistency constraints is atomicity.
Atomicity typically comes in different forms like concurrency atomicity
(serializability) or failure atomicity (if a failure occurs, the transaction is
either executed correctly or not at all).

The concept of activities is similar to use cases that were first advocated
by Jacobson [14]. An extension of use cases, called use case maps, has been
described by Buhr [5]. An important difference between data flow models,
message sequence charts ([12] and [13]) and similar methods, that
essentially model interconnections and interactions between modules, is that
use case maps concentrate on the end-to-end behavior across several
modules. However, the drawbacks of use case maps are that this approach is
informal and does not support the specification of non-functional constraints
as described below. The activity concept thus tries to unify the above
mentioned notions.

1.3.3 Specification of Dependability and X-ability Constraints by
Means of Annotated Activities

In order to meet requirement 3, the next two paradigms are proposed.
Non-functional constraints must be defined end-to-end, i.e. between the

stimulus from and the response to the environment. These end-to-end
constraints can be conveniently specified as activity annotations, as
described in [10]. A similar extension of message interaction diagrams with
timing constraints is described in [6].

The introduction of additional constraints that do not follow from the
system requirements should be avoided because they restrict the freedom of
the designer in an unnecessary way. Nevertheless, many approaches try to
decompose non-functional constraints in parallel with the componentization
of the system. A typical example is the decomposition of timing constraints

www.manaraa.com

68 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

that introduces unnecessary complexity and easily leads to infeasible
schedules.

Non-functional constraints must also be defined in a platform­
independent way in order to support portability and reusability. In this
manner, there is clear separation between the requirements and their
implementation in terms of a particular execution platform.

1.3.4 Verification of the Dependability and X-ability Constraints
Simultaneously with the Refinement of the Static and Dynamic
Structure of the System

For the verification of the non-functional constraints, many methods are
available. The annotated component interaction diagrams together with the
component specifications (see subsection 2.2) can be used for the generation
of the necessary input. The related analysis models are summarized in
subsection 2.3.5. Without going into detail, the analysis methods can be
categorized as shown in Table 1:

Table 1: Verification methods for different dependability aspects

Dependability aspect Verification Method
Timeliness Schedulability analysis
Performance Stochastic analysis: Queuing models

Markov models
Reliability Reliability analysis

Safety Formal specification and verification

Security Security analysis

The modeling of the system behavior by means of annotated activities
has a number of advantages that are summarized below2 :

a) Activities are an intuitive means for the modeling of the dynamic
structure, i.e. the behavior of a system. Of course, the behavior is
completely specified by the implementation of the methods of the various
objects. In a large system, however, the overview is quickly lost because
of the low level of abstraction. This is especially important for complex
distributed real-time systems that consists of hundreds of objects
distributed over many processors.

2 Note that these advantages do not depend on the fact that the system structure is modelled
in a component-based way

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 69

b) Activities can be decomposed simultaneously with the class structure.
This is not surprising since they are just another representation of the
implementation of the various classes.

c) Activities are also a convenient means for the modeling of
synchronization and communication. This stems from the fact that
communication and synchronization restrict the dynamic behavior of a
system, i.e. the possible interleavings between different concurrent
activities. By looking only at the active objects (parallel processes), it is
hard to keep track of the various interactions.

d) Activities are the preferred entities for the specification of dependability
constraints and X-ability features by means of annotations. The reason is
that the implementation of non-functional constraints depends on the
availability of sufficient runtime resources and thus is a dynamic feature.
Putting dependability constraints where they belong also adds to the
comprehensibility and reusability of the design.

e) The linking of dependability and X-ability constraints with activities
avoids the real-time anomalies described by Bergmans and Ak~it [2].
These anomalies occur if the code of a class is "overloaded" with non­
functional aspects and are caused by the intermingling of orthogonal
design dimensions: functionality at one hand and various dependability
and X-ability aspects at the other hand. In fact, also the composition
filters proposed in [2] avoid synchronization and real-time anomalies by
defining these properties not as class attributes but as attributes of filters
that manipulate the message communication, i.e. the dynamic properties
of the system.

£) The consequent separation of different design dimensions increases the
reusability of modules and classes. A typical example is the use of the
same object by several activities with different non-functional
constraints, e.g. for different operation modes or priorities. Attributing
the classes or objects with non-functional requirements would either
result in non-reusable components or in complex parameterized
specifications.

g) A system model that is given in terms of components and activities can
be easily translated into a scheduling model. Obviously, for this purpose
the activities must be extended to describe the complete execution graph.
Such a scheduling model is e.g. described in [32]. Each method
invocation is modeled as a non-preemptive piece of an activity (typically
a method invocation), called a bead. The resource requirements of the
beads can be deduced from the implementation of the various classes. At
a higher level of abstraction, these numbers would be based on estimates;
at the program level, a code analyzer or execution profiler can be used.

www.manaraa.com

70 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

h) A scheduling model as mentioned in the previous point, can also be used
for a schedulability analysis at higher levels of abstraction. In this way,
the timeliness of the system can be checked at different levels of
refinement. An algorithm for the stepwise refinement of schedules is e.g.
described in [7]. Since this algorithm makes use of the scheduling
information of the upper level and because the typical expansion factors
are small (in the order of 5 to 10), the algorithm achieves reasonable
execution times despite the NP-hardness of the problem. Similar
arguments hold for a dependability analysis along the other dependability
dimensions.

i) Similar to use cases and use case maps, activities also help for the
generation of test cases.

In a recent paper, also Ren et al.[27] notice that the functional domain of
a design should be clearly separated from the timing domain. They also
argue that it is necessary to specify the timing behavior of collections of
modules. In their actor-based model, they define RTsynchronizers as
independent modules that specity timing constraints on different event
patterns of a group of actors. A RTsynchronizer thus restricts the temporal
behavior of such an actor group. Since events are defined as the invocation
of a message at an actor, this method has some similarities with the
composition filters described in [2] and discussed above.

Although this approach acknowledges the separation of static from
dynamic properties and the necessity to define end-to-end timing constraints,
it has a number of disadvantages compared to the activity-based method
advocated in this chapter. First of all, event patterns are nice abstractions of
the system behavior but do not provide an intuitive view of the flow of
control. In addition, there is no obvious way to decompose RTsynchronizers
simultaneously with the class structure. Together with the fact that the actor
groups of RTsynchronizers can overlap, the aforementioned properties of
R Tsynchronizers make it difficult to comprehend the timing behavior of
complex systems. Finally, event patterns cannot be straightforwardly
translated into a scheduling model since they do not specity the precedence
relations.

1.4 What is the Design Space of Architecture?

Since separation of concerns is important for leT-architectures, It IS

meaningful to separate the design space into functional and non-functional
dimensions. An example of important design dimensions is given in Figure
2.

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 71

Structure
Functionality

Component interfaces
Component configurations

Dependability
Performance
Timeliness
Reliability
Availability
Safety
Security
Robustness

Com posability
Interoperability

Reusability

'Local/Global Behavior
Control modes

Activities/Transactions
C&S protocols

General
Scalability
Flexibility

Maintainability
Reusability
Openness

U ser-Friendliness
Costprize ...

Figure 2: Important design dimensions

1.4.1 Functional Dimensions

1.4.1.1 Structure

A good architectural model should define the static structure of a system
in terms of the major components, including their specification
(functionality), their interfaces, their interconnections and the possible
restrictions of the configuration of components and interconnections.

Although implied by a good model, the following aspects should be made
explicit since they play such a vital role in the development, production and
maintenance process of an lCT-system:

a) The functionality.
b) The interfaces between the various components.
c) The available configurations. These configurations are important for the

sales department, the service department and the users/customers of a
system.

www.manaraa.com

72 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

d) The isolation of stable, changing and critical technologies into
appropriate building blocks. In this way one can try to keep the influence
of the often rapidly changing technology as local as possible.

1.4.1.2 Behavior

A good architectural model should also define the dynamic structure of a
system. Ideally (see subsection 1.3) this is done in terms of concurrent
activities/transactions, that describe also the restrictions on the possible
execution paths. In practice, the possible interaction sequences between
components are often specified in terms of protocols.

1.4.2 Non-functional Dimensions

1.4.2.1 Dependability

As mentioned before, this dimension is especially important for
embedded and safety-critical systems. As mentioned in the beginning of
subsection 1.3, dependability includes performance, timeliness, reliability,
availability, safety, security and robustness.

The performance of a system is often expressed in terms of average
response time, throughput (processing or communication bandwidth) and
sojourn times. For embedded and safety critical systems it is usually also
necessary to specifY timing constraints in terms of periods, synchronization
intervals and deadlines (maximal response times). Note that the specification
of timing constraints is only meaningful if also the maximum load of a
system is specified in terms of a load hypothesis. Reliability, availability,
safety, security should be defined in terms of a hypothesis of the respective
adverse events. Finally, robustness is the ability of a system to cope with
unexpected adverse events that are not covered by a separate hypothesis.

1.4.2.2 General Aspects

This category is used as a collection of generally desirable features of an
architecture that, depending on their importance for a particular architecture,
mayor may not be regarded as separate dimensions. Among the most
common features are:

a) the scalability of a system,
b) the flexibility to make different configurations and variants,
c) the extendibility and maintainability of a system,

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 73

d) the reusability of building blocks of systems and system families,
e) the portability to different execution environments,
f) the openness and interoperability of a system and
g) the robustness with respect to changing requirements.

1.5 Which Views Should be Supported by Architecture?

A view describes a system with respect to some set of attributes or
concerns [26]. The views to be supported by an architecture can be derived
from the concerns of the various stakeholders like development-, production
and service engineers, development-, product- and production managers,
sales people and users/customers. The relation between the dimensions of an
architecture and the concerns of the various stakeholders is shown in Table
2.

Table 2: The relation between the dimensions of architecture and typical stakeholders

Engineering Custo- Sales Users
Devmnt Product'n Service mer

Structure
Functionality x x x x x x
Interfaces x x x
Configurations x x x x x
Behavior x x x

Dependability x x x x x
X -abilities x x x x x

A non-exhaustive overview of the concerns of different stakeholders is
shown in table 2:

a) Development engineers: For all types of development engineers (like
hardware-, software- and system engineers), the architecture is the most
important means for discussing alternatives, achieving consistency and
enabling concurrent engineering. For complex systems, it is necessary
that each discipline derives its own architectural view from the overall
architecture.

b) Production engineers: Since assembly can be considered as the time­
sequential establishment of system interfaces [26], production and
assembly is an important view onto an architecture. This also holds for
ICT-systems and especially for component-based systems. In particular,
an architecture should support the design of the system production
(generation) process. It is often the case that development engineers pay

www.manaraa.com

74 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

too little attention to the production and assembly of the different
configurations of a system. A typical problem is that they concentrate too
much on the complete system and do not consider the efficiency of the
assembly of different subassemblies and configurations.

c) Service engineers: For the service of a system not only the various
system configurations, their functionality and their interfaces are
important, but also their failure and repair characteristics. The latter are
often specified in terms of (a) units of failure (the smallest units to which
failures are traced down); (b) units of replacement (the smallest units the
service engineer will replace); units of repair (the smallest units the
service workshop will repair); and (c) units of recovery (the smallest
units that can be independently recovered after repair). If appropriate,
these categories should, of course, also be indicated at the architectural
level.

d) Customer: Customers might be external persons or internal management.
They are primarily interested in the business performance indicators like
customer satisfaction, quality, time to market and costs. Since these
indicators must be known as early as possible, the architecture plays an
important role in their estimation. In addition, customers are also
interested in general product features like configurability, dependability
and X-abilities like scalability, maintainability and interoperability.

e) Sales: For the sales department, mainly the available configurations and
their specifications (functionality, behavior, dependability and other X­
abilities) are important.

f) Users: The users are primarily concerned about the usability and
reliability of the system for a given purpose. Depending on the type of
user, he might also be interested in a number of general X-abilities.

2, COMPOSABILITY CRITERIA FOR RESOURCE
CONSTRAINT COMPONENT ARCHITECTURES

2.1 Introduction

Component-based software engineering and component-based
architectures become increasingly important because of their potential to
increase the software productivity by supporting reuse. The availability of
modern middleware in the form of ORB's (Object Request Brokers) enables
the construction of distributed component-based systems in a transparent
way, i.e. independent from the distributed nature of the system and the

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 75

underlying communication network. Although components do not need to be
objects, they share many concepts and software engineering advantages with
object-oriented approaches. Important features of components are
modularity, encapsulation (i.e. a clear separation between
specification/interface and implementation) and interface inheritance. Note
that nothing is told about the implementation of components: it is perfectly
possible that they are constructed in an object-oriented way, including
implementation inheritance.

One of the greatest challenges of component-based architecting is to
make architectures compositional, i.e. to ensure that all envisaged
combinations of architectural building blocks (e.g. the components of a
product family) work together without problems. A more exact definition is,
that an architecture is composable if a property that was established at the
component level, will not be invalidated if it must cooperate with other
components [18]. Important examples of such properties are timeliness,
reliability, safety but also scalability and testability. Note that this definition
is less stringent than the one usually used in the context of formal methods.
There, a formal model and its proof system are said to be composable, if the
correctness of a complete system can be established by using only the
(independently proven) features of its components.

Composability is especially important for resource constraint systems.
Even if the functional interfaces are correct, problems tend to arise in many
other areas that are related to the use of shared resources that are scarce.
Examples are missed deadlines due to race conditions and schedulability
problems, reduced reliability due to unexpected component interference,
slow-down or blocking due to constraints of the memory or communication
system and many other "side effects".

Component composition should be treated in the context of an
architecture because this allows the specification of important global system
properties like interaction styles and constraints. The basic ingredients of any
architecture are components, interfaces and the relations between
components. The latter can be static (common to all runs like
communication channels and shared data structures) or dynamic (occurring
in a particular run like message interaction and synchronization). With
respect to defining the relations between components and thus
composability, current architecting practices for real-time systems have a
number of significant shortcomings. Among the most important are:

a) Conventional descriptions of architectures concentrate too much on the
structure of the system and do not adequately deal with the dynamic
aspects. The emphasis is on the componentization of the system and the
description of the component interfaces, but not on the precise

www.manaraa.com

76 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

description of the behavior. As systems become more complex, it is,
however, important to restrict the behavior to certain well-defined and
understood modes.

b) Interface descriptions usually focus on the functional part and tend to
neglect resource requirements and interaction styles. Even if additional
aspects of the various interaction channels like protocols are specified as
part of the interface, there are no restrictions on the actual interaction
patterns and behavior that may occur at runtime. This is especially true if
the interaction patterns in the time-domain are not specified.
Consequently, there is no guarantee that these components are
composable.

c) There are no good approaches for tackling the non-functional require­
ments, like dependability (performance, timeliness, reliability, availabili­
ty, safety, security and robustness), scalability, flexibility, usability,
maintainability and reusability. These system aspects should be treated as
independent design dimensions, specified in an implementation­
independent way and implemented in such a way that the resulting
behavior becomes predictable. Non-functional requirements should be
stated in the requirements and taken into consideration from the
beginning, i.e. already during the architecting phase. Unfortunately,
current software engineering practice often relies on Moore's law (the
hope that the abundant availability of computing power will decrease the
chance for conflicts related to computing and memory resources) and
considers non-functional requirements only during the implementation
phase. Obviously, the explicit treatment of the non-functional
requirements from the very beginning of the development is a
prerequisite for composability.

The non-functional properties of a system can be considered as a special
type of 'emergent properties' [28], because they are related to the overall
behavior of the system and depend on the coordinated action of a great
number of, or even all, components. They can thus not be tackled in a simple
reductionistic way, i.e. by designing these properties only into individual
components.

A good component architecture can support emergent properties by
defining principles for their uniform implementation. These principles are
described in terms of appropriate architectural styles, distributed algorithms
and protocols that govern the component interaction. They can be either
implemented at the application level (i.e. in all relevant components) or as
generic services in the execution platform. The latter is preferable because
the emergent properties can be effectively implemented in a uniform and
reliable way. Typical generic services for distributed real-time systems are

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T SYSTEMS 77

clock synchronization, scheduling, membership, atomic broadcast and
support of replica determinism. Note that there is no fundamental difference
between component architectures and component frameworks since also
frameworks often implement particular component interaction styles and
algorithms.

An example of an emergent non-functional property is the enhancement
of the reliability by component replication. For this purpose, multiple copies
of a component are installed, preferably on different processors of a
distributed system. These copies get the same input, execute in parallel and
produce a single output via a voting algorithm. In order to keep the
replication transparent at the application level it is convenient to have
operating system services that facilitate the instantiation of multiple
instances of a component, the distribution of the input and the voting of the
output. In addition, the operating system should support replica determinism
by ensuring a distributed schedule that guarantees the simultaneous
execution of the code of the replicated components, including the
consumption of the inputs and the generation of the outputs.

The correct and consistent implementation of emergent properties is
essential for achieving composability. At the moment, the composition
problem can only be solved for architectures that are based on restrictive,
and often unrealistic, assumptions. The most prominent example are Time­
Triggered Architectures (TT A's) (see [17] and [18]) that are based on a
strictly deterministic environment (100% assumption coverage) and mainly
suited for periodic hard real-time systems. For the much larger class of
Event-Triggered Architectures (ETA's) there are, however, no good general
concepts for dealing with composability. This is mainly caused by the fact
that the time behavior of ETA's is not strictly controlled in order to achieve
flexibility and high resource utilization.

In ETA's, the correct composition of components has many functional
aspects (like the specification of functions and invariants) and non-functional
aspects (like timeliness and reliability). In order to arrive at a compositional
architecture, the following conditions must be met:

a) The specification of components must cover all aspects that influence the
interaction with other components. This requirement comprises two main
categories:

Resource usage: It is necessary to specify not only the functions
provided by a component but also all resources it uses for this
purpose.

- Architectural styles used or assumed in the interaction with the
environment: Architectural mismatches are very difficult to work­
around and are responsible for many problems with the integration of

www.manaraa.com

78 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

components, that are independently developed or belong to different
component frameworks, into a given architecture.

b) All non-functional constraints must be defined separately from the
functional specifications of the components, e.g. by means of component
interaction diagrams. The reasons are:

These constraints are emergent features and depend not on individual
components but also on their interaction and on the available
resources. The fulfillment of the non-functional constraints is thus a
dynamic feature.

- Components become more reusable. This holds especially for the time
domain that is heavily dependent on the execution platform (e.g.
clock rate and available memory). It is for example not appropriate to
specify timing constraints (deadlines, periods, etc.) at the component
interface because the component may be used in different real-time
contexts.

2.2 Interfaces

In order to achieve composability, the specification of a component must
include all aspects that influence the interaction with other components in
any way. Special attention must be paid to active components that have one
or more concurrent threads. This requires for each component the
specification ofthe following aspects:

a) Functionality of the component services:
In order to specify the functional part of a component interface, the
algebraic style that is used for object-oriented specifications is well
suited.

Operations: Pre- and postconditions
Attributes: Preferably, attributes should be read-only and changeable
only via the operations. Note that stateless components are much
easier to compose because their behavior does not depend on previous
interactions, i.e. on their history.
Exceptions: All exceptional states that the component can not handle
itself.
Invariants: All conditions that must hold for the whole component at
the beginning and at the end of an operation. Also the constraints on
the concurrency of the various operations (sequential or concurrent
execution) can be expressed by means of invariants. Concurrent
execution means either that the component serializes request

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T SYSTEMS 79

automatically or that requests can be arbitrarily interleaved. In the
latter case, reentrancy is an important property.

b) Estimates about the resource requirements:
- Execution per operation and thread: Minimum, average (distribution)

and maximum execution time. Often only the Worst-Case Execution
Time (WCET) is specified. Note that this metric is platform
dependent.
Memory: Minimum, average (distribution) and maximum required
primary of any type. For this purpose, a platform independent metrics
(e.g. bytes or 32-bit words) can be used.
Fault hypothesis: All (combinations of) faults the component is
supposed to tolerate.
Software reliability in a general metric like estimated faults per kByte
code.

- Threat hypothesis: All (combinations of) security threats the
component is supposed to tolerate.
Dependencies: If not all operations and threads have the same
dependencies, these must be given at a lower granularity than a
component because not all operations or threads might be used in
every application. They include services used from other components,
including hardware components, system services (operating system,
communication system, ORB, DBMS, etc.) and libraries. In order to
be able to handle hardware resources as components, wrappers are
usually used for their encapsulation. Typical hardware resources are
sensors, actuators and peripherals. Whether they can be used
concurrently or not (preemptive or non-preemptive) can be specified
by appropriate invariants (see point a). Note that the dependency
relation is transitive.

c) Architectural styles used or assumed in the interaction with the
environment. There must be a match between the architectural styles
used within a component and the architectural styles used for the overall
system. For a detailed description of these problems associated with
architectural mismatches see [3] and [9]. In order to describe the
interaction styles, first a Concurrency model must be defined that gives
the number of concurrent threads of the component: 0 for a passive
component, 1 for a single-threaded component and n for a multi-threaded
component. For active components, also the following models must be
known:

Trigger model: Time-triggered or event-triggered. In a time-triggered
model, an active component is driven by its internal clock (the local
clock of the execution platform) and polls its environment at regular

www.manaraa.com

80 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

intervals. In an event-triggered model, its environment drives an
active component, e.g. by events or operation calls.
Interaction model in terms of:
* Topology: Geometric form of the control- or data-flow.
* Multiplicity: Point-to-point, multicast / broadcast; directed or

undirected communication.
* Sharing: Centralized or distributed; communication via a shared

blackboard or messages.
* Initiative: Publisher/subscriber or client/server; implicit activation

of the operations by the server or explicit invocation via the client.
Note that the client/server style is meant here in the object­
oriented sense and not in the networked sense.

* Periodicity: Continuous, periodic or aperiodic; the interaction is
continuous, periodic or aperiodic. Continuous interaction occurs
e.g. in hybrid systems or in pipe-and-filter architectures.

* Synchronicity: Synchronous, asynchronous or datagram; in the
first two cases, the caller waits on the results (RPC) or continues
in parallel and picks-up the result later; in the last case, a single
message is exchanged.

* Autonomy: Inactive, active or mobile entities; passive stationary
components, active stationary components or mobile autonomous
agents.

* Protocol: sequence of related interactions. Often different modes
can be distinguished like initialization/set-up, normal operation
and closing.

* Binding: Compile-, instantiation-, initialization- or invocation­
time; defines when is the identity of the interaction partners is
established.

Note that the synchronicity of the interaction (synchronous, RPC or
asynchronous) is implied by the signature of the various operations.

d) Reflection interface (similar to the reflection API in Java) that allows to
infer the properties of a component at design-time or at run-time. The
latter is e.g. necessary if components are dynamically instantiated by an
ORB. Such a reflection interface must allow to infer at least the
following information:

General description of the features and purpose of a component.
Complete description of the interface as explained above.
Known problems.

For the description of these interface attributes, it is important to keep
Meyer's contract principle [22] in mind: If the client of a service obeys the
preconditions, the component must guarantee the postconditions. Even if a

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 81

component is not specified in a formal way, it is worth while to document
the pre- and postconditions informally. It is important to realize that this
holds mutatis mutandis also for the architectural styles.

It should not be too difficult to extend the CORBA (Common Object
Request Broker Architecture) IDL (Interface Definition Language) for the
specification of the above mentioned features.

2.3 A Design Method for Distributed Real-time Systems

In general, the methods that were developed for the design of object­
oriented systems can also be used for component-based systems. An
exception is the use of inheritance: since inheritance breaks encapsulation,
there is still much debate about its use in component-based systems.

One great advantage of the object-oriented approach is that there is a
clear separation between the structure of the system (described by class-,
object-, package-, component- and deployment diagrams) and its behavior
(described by use case-, interaction-, activity and statechart diagrams).
Thereby, state charts are often used for the description of the local behavior
of components and different types of interaction diagrams for the description
of the emergent behavior of a collection of components. This allows also a
strict separation between the specification of functional and non-functional
features. As described in subsection 1.3, the latter are dynamic features and
related to the interaction of components. Another advantage of this object­
based approach is that it can be used at all levels of abstraction from the
system architecture down to the implementation. In this way, the use of
multiple incompatible modeling techniques (e.g. entity-relationship
diagrams, data-flow models, finite-state machines, etc.) and the resulting
interpretation and translation faults can be avoided.

For the modeling of distributed real-time systems a number of specialized
methods have been developed like Real-Time UML (Unified Modeling
Language) [6] and MSC (Message Sequence Charts) ([12] and [13]) that
both include (message) sequence diagrams that can be annotated with timing
constraints. In subsection 1.3, activities were proposed as a concept that
unifies the above mentioned approaches and extends them with respect to the
other dependability constraints.

The design of complex systems requires several levels of abstraction that
are usually designed in an intermingled fashion with much iteration in
between. In addition, the top-down refinement is usually combined with
bottom-up composition of components. At each level of abstraction, the
components (including their constituent classes and objects) are refined
together with the activities that describe their interaction. In the approach for
the construction of dependable distributed real-time systems that is proposed

www.manaraa.com

82 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

below, the design at each level of abstraction is separated into six steps.
Although these steps are listed in logical order, they are usually intermingled
with much iteration in between. These six steps are:

2.3.1 Construction of a Process Model: What must be supported or
controlled?

Systems and their architectures should be derived from the process that
the system is intended to support. This process can be a production process
(continuous or discrete fabrication, workflows, etc.) or a usage process
(describing the use of the product or system by different classes of people
like customers, users, developers, maintainers and service personnel). A big
advantage of this approach is that the development is automatically focussed
on the behavior and the usability of the system for the stakeholders.

This model describes the essential classes, objects and activities in the
environment that must be supported or controlled by the system. Examples
of classes and objects are sensors and actuators, user-interface devices, ICT­
devices and additional entities necessary to model the behavior of the
environment. Their specification includes functional constraints like pre/post
conditions and invariants.

Up to now, the development of embedded systems was mainly driven by
technology. This was quite natural in a technical environment where the
system usually interacts with other systems and the users are either other
technicians or quite distant and abstract for the developers. In today's
competitive business environment, however, this attitude is not adequate
anymore because developments are increasingly driven by the primary
business. Examples are discrete or continuous production systems, that are
more and more driven by logistic systems that control a business process that
is carefully (re)designed to fulfill the customer requirements. Other
examples are consumer products that are less and less bought because of
their technical merits but because of their ability to support a certain user
activity like the collection of information, the support of a personal job or
entertainment. A third class of examples is all sorts of command and control
systems that are used in cars, planes and military systems. Also here, looking
at the processes to be supported can often considerably reduce the
complexity of the system and especially of the user interface. In all cases, the
end-users enter the picture and the Embedded System must be designed to
support a user- or application process.

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T SYSTEMS 83

2.3.2 Construction of a System Model: How must the supporting or
controlling system be constructed?

The components and activities of the supporting or controlling system are
derived from the process model. If necessary, supporting classes, objects and
activities are derived from the controlling ones.

2.3.3 Construction of a Distribution Model: How must the various
components be distributed and connected?

This model describes the distribution of the components over the
available resources. In order to support communication, it might be
necessary to add communication components and to extend the activities.
The communication times can be modeled by introducing network
components that introduce the appropriate delays. Alternatively, the
communication delays can be directly introduced in the scheduling model
(see subsection 2.3.5).

The explicit modeling of the distribution of the software over the
processors of a distributed system is important for some applications and
transparent for others. In the latter case, a (semi-)automatic scheduler can
first solve the assignment problem and then construct a local schedule per
processor.

2.3.4 Construction of a Concurrency Model: Which components and
objects are active or passive and what dependencies
(synchronization and communication via messages or shared
resources) exist between the different activities?

This model is usually implied by the architectural styles used in the
system. It describes the active objects that start, and possibly also terminate,
activities. For these active objects, the following additional models must be
defined as described in subsection 2.2:

a) Trigger model: Time-triggered or event-triggered.
b) Interaction model in terms of topology, multiplicity, sharing, initiative,

periodicity, synchronicity, autonomy, protocol and binding.
c) Note that the synchronicity ofthe interaction (synchronous, RPC or

asynchronous) is implied by the signature of the various component
operations.

www.manaraa.com

84 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

2.3.5 Construction of a Dependability Model: How can dependability
be achieved in a predictable way?

For the verification of the non-functional constraints, many methods are
available. In addition, a worst-case stress-analysis is important for all
dependability aspects. The annotated component interaction diagrams
together with the component specifications can be used for the generation of
the necessary input. For the different dependability aspects, the following
models must be constructed in order to apply the appropriate analysis
methods and techniques (see also table 1):

a) Scheduling model: Schedulability analysis based resource usage of
components, activity activation frequencies and deadlines.

b) Reliability model: Reliability analysis based on reliability figures of
hardware and software objects, activity activation frequencies and
reliability requirements.

c) Availability model: Analysis based on repair times of hardware and
software objects, activity activation frequencies and availability
requirements.

d) Safety model: Analysis of the absence of catastrophic states.
e) Security model: Security analysis based on threat probabilities of objects,

activity activation frequencies and security requirements.

2.3.6 Evaluation & Improvement: How can the resulting system be
improved?

The improvement must be based on a careful evaluation of all functional
and non-functional features of the system. The introduction of more
resources or the reduction of the functionality should only be considered if
strictly necessary. In principle, the following measures can be taken:

a) Efficiency enhancement by clustering of objects and components:
- Clustering of active entities based on temporal-, control- or functional

coherence.
- Migration of passive entities used by more than one activity and

whose resource space shows considerable overlap with active objects.
- Clustering of common passive entities into larger components.

b) Performance enhancement by introduction of more concurrency:
- Reduction of blocking times.
- Splitting of critical activities into concurrent ones.

c) Dependability enhancement by introduction of more resources or
reduction of the functionality.

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T SYSTEMS 85

2.4 Example

The approach described in subsection 2.2 and 2.3 is demonstrated by
means of a simplified example of a Car Navigation System (CNS). Such
systems are aimed at assisting the driver of a car to efficiently navigate
through an area. To this end, the system has a display that shows a map of
the area around the location where the car is driving. A special symbol on
the map indicates the current position of the car. The map and the location of
the car-symbol are updated as the car moves around. The display is located
together with a keypad on a console in the dashboard of the car. The driver
can use the keypad to enter commands. Typical commands are: "display a
particular map", "zoom in/out" and "find a route from where I am now, to a
particular destination". If a route has been requested, this route is shown on
the map of the display.

This case study describes the architecture of the car navigation system.
To this end, the UML notation and process as described in [4] is used. The
Rational Unified Process [20] uses the 4+ I view model initially suggest by
Kruchten [19] for describing an architecture from different viewpoints.
These five views are

a) the use case view describing the behavior of the system as seen by the
stakeholders in terms of use case models;

b) the design view comprising class diagrams, object diagrams, interaction­
or activity diagrams and statechart diagrams;

c) the deployment view describing the mapping of the software components
onto the hardware components in terms of component diagrams (software
topology), deployment diagrams (hardware topology) and possibly also
interaction- or activity diagrams and statechart diagrams;

d) the process view that is similar to the design view but emphasizes the
active classes and objects (processes and threads);

e) and finally the implementation view encompassing the software entities
(files) used to assemble the system in terms of component diagrams and
possibly also interaction- or activity diagrams and statechart diagrams.

The 4+ 1 view model can be mapped onto the first five design steps for
distributed real-time systems described in subsection 2.3 as follows:
a) The use case view can be considered as a greatly simplified process

model.
b) The design view corresponds to the functional part of the system model.

Note that neither the use case view nor the design view supports the
specification of non-functional requirements like dependability.

www.manaraa.com

86 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

c) The deployment view corresponds to the distribution model of the
proposed method.

d) The process view corresponds to a simplified version of the concurrency
model of the proposed method.

e) There is no equivalent to the implementation view since software
configuration management is not of concern here.

For this case study, the most interesting views are the use case view, the
design view and the deployment view. For the design view, a class diagram
and a sequence diagram will be presented. An extra object diagram is not
needed since every class of the eNS system is instantiated only once when
the system is initialized. Also a separate process view is not used since the
active classes and their interaction can be indicated in the class diagram. In
order to simplifY the presentation, the deployment diagram subsumes also
the component diagram.

2.4.1 Process Model

As described in subsection 2.3, the method starts with a process model.
For this example, a use cases model is used.

Driver Car Navigation System

Figure 3: The use case diagram

Use cases are
mutually exclusive

17'

As the car moves, the eNS system automatically updates the map on de
display and the position of the car ('Update map' use case). The driver of a
car may also instruct the eNS to find a route ('Find route' use case). To this
end, the driver must enter a destination via the keyboard, possibly after
having requested another map. After the eNS has calculated a route, the map
is updated and the positions of the car and the destination are indicated.
These use cases are shown in Figure 3.

For this example, only 'Find route' is considered, which is the more
complex of the two use cases. In order to simplifY the schedulability analysis
(see below), it is assumed that the two use cases are mutually exclusive. This
is not a big restriction because also the 'find route' use case comprises an

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 87

update of the display; only the writing of a new map into the display buffer
(the 'Blackboard') may take more time because of the calculations involved.

2.4.2 System Model

The next view that is described is the design view, which coincides with
the system model. This view will be described in terms of a class diagram
(Figure 4) and a sequence diagram (Figure 5).

First, the classes that constitute the system are briefly described. The
CNS contains a global positioning subsystem 'GPS' to determine the
position of the car. The 'GPS' system consists of a 'Receiver' (GPS
functions through reception of several satellite signals) and a processing unit,
called 'Position', which computes the location from the receivers'
measurements.

Furthermore, the CNS contains a 'RouteDB' subsystem, which is
responsible for generating maps and computing routes for given source and
destination locations. To this end, it consists of a route 'Database', a 'Query
Manager' that manages the access to the database and a 'RoutePlanner'
which executes the algorithms necessary to find a route from source to
destination. Such planning problems are, in most cases, NP-hard and their
approximation needs abundant processing resources.

GPS Console RouteDB

get_position() put_map() get_map()
model) find_route()
on olf() on_olf() , ,

I I I
Position Receiver RoutePlanner QueryManager Database

get_position() ~ model) find_route() ~ getmap() ~ get_datal)
on_olf()

I I I J
Controller Blackboard KbdManager DisplayManager Speaker

get() update_frame() sound()
putt) update_map()

update_route()
updatejnfo()

Figure 4: The class diagram

www.manaraa.com

88 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

The third subsystem, the 'Console', consists of a keyboard managed by
class 'KbdManager', a display managed by class 'DisplayManager', a
'Controller', a 'Blackboard' and a speaker managed by class 'Speaker'.
These classes have the following responsibilities. The 'KbdManager' scans
the keyboard matrix with a period of 0, I s (this is an internal of
'KbdManager' and not shown in Figure 4), combines the characters entered
until the next enter-key to a command-line and writes the command line into
the 'Blackboard'. The command-line buffer of the 'Blackboard' has room
for several commands. The 'Blackboard' is a shared repository for data
within the 'Console'. It also functions as a video-buffer for the
'DisplayManager'. The latter polls the contents of the blackboard every 20
ms. Also the 'Speaker' polls the 'Blackboard' with a period of 100 ms for
warning signals to the driver. The 'Controller' manages the cooperation of
the classes within the 'Console' and also the interaction with other
components. To this end, it scans the command buffer of the 'Blackboard'
every 100 ms and takes the appropriate actions.

Since all classes, except the 'Blackboard', show autonomous behavior
they are modeled as single-threaded active classes.

The dynamics of the system is modeled using sequence diagrams. In
Figure 5, only a sequence diagram, which models a possible execution for
the 'Find route' use case, is given.

The sequence diagram shows an example of a possible execution of the
system. This execution starts with the controller polling the keyboard for
commands. However, no command has been entered yet. Next, the
Displaymanager, and subsequently, the speaker, check whether the
blackboard contains any data for them. The polling periods for these
respective checks are 20ms and 100 ms (indicated alongside the dotted left
bracket). While these polling actions are going on, the user enters a "find
route" command and a destination. This command should be retrieved by the
controller from the keyboard manager within 1 s after the previous time that
the keyboard manager was polled.

Once the controller finds a "find route" command, it proceeds by
requesting the current position from the GPS. This position is used as the
source for the route to be found. Subsequently, the controller sends a
"findJoute(src,dstn)" request to the Route DB. This request is forwarded to
the Route Planner. The route planner then requests the maps it needs from
the actual Database via the Query Manager. In the execution depicted, two
such requests are shown, the dotted lines between them indicate that this
sequence may repeat a number of times. When the planner has computed a
route, the corresponding map and route are written into the (video buffer of
the) blackboard. This data is retrieved from the blackboard by the display
manager and made available to the driver of the car.

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 89

f ...----, ...----, ~ I .81,ckb",d I ~G I .R;~I' I
Driver

get cmnd

.(II<II-__ -_-.~"?_::~ __ -lt_-_-__ -_-__ -_-j,_ f--_-"_"!!!c::~'!l=~=L-_+_-_-__ -_-__ -_~_.

~ I i check
i i ~~If---~~~----~

I ~~~~natitn i gv, L"----"ch="'k'--tt ____ -+/
~ i rr
liE ~ II--",ch"':::k,+/
i i §v, !_ I _.::.ch:;::eck:..-.l i i r
i j geLcmnd
... ·11+-+---+1----1+.....::....::.....-1---,---1

___ ~_-_- £.flln.!!(!!!!d..,.!9.!:!~, d~~l. ______ ., , __ ..,~ __ +-=g-='t.Jl::...O_Sjti_on+-__ +-__ -+ __ .w,
i r

i
i
i
i
i
i
i
i
i
~ ~.

fo4------ "4----- __ ~o~~~n.i~q -------- --------- --------
find ro\!! re,dstn) d

fin _route get map getrnaps(src,d tn)

~------ ~------- ~

~ get_maps(src,d In)

~ m, &rnule .------ ------- ~ ------- ----- ---------
view routs

' _. I-__ +l-'-g'.c.t(m_,p_",o_ut..,e) ""'11---------

Figure 5: A sequence diagram for the 'Find route' use case

2.4.3 Distribution Model

Next step of the proposed method is the definition of a distribution
model, i.e. a model that shows how the components are distributed over the
nodes. This yields the deployment diagram shown in Figure 6.

Figure 6: The deployment diagram.

Route
Planner

www.manaraa.com

90 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Based on the class-diagram, four components are identified: a 'GPS'
component, a 'Console' component, a 'RouteDB' component and a
'RoutePlanner' component. Furthermore, the communication between the
components is explicitly modeled by using a 'Bus' component. Modeling the
bus as a component allows us to treat its non-functional features in the same
manner as all other components. This also allows us to hide the internals of
the bus like the protocol stack that usually consists of a physical layer and a
Medium ACcess (MAC) layer. In order to abstract from the MAC protocol it
is assumed that a bus access for transmitting a single message takes at most
40lls.

The 'Bus' and 'GPS' components are both mapped onto single nodes
because these are commercially available this way. To minimize
communication cost, the 'RouteDB' and the 'RoutePlanner' are mapped
together onto one node. The remaining component, the 'Console', is also
mapped onto a single node. All components communicate via the 'Bus',
using the Client/Server paradigm.

In order to ensure the correct cooperation between the components and to
facilitate the schedulability analysis, their interfaces must be described along
the lines presented in subsection 2.2. To this end, the templates shown in
Table 3 are used:

Table 3: Interface specifications of the components

Component name Console

Functionality See class diagram

Resource Usaf?e per op. n.a.
Worst Case Exec Time n.a.
Max. Memory use 5Mb

Dependencies GPS, RouteDB and Bus
Peripherals Display device and Keyboard device

Architectural Style
Topology Bus connection to GPS and RouteDB
Multiplicity Point-to-point
Sharing Distributed
Initiative Client/Server
Periodicity Aperiodic
Synchronicity Synchronous
Autonomy Active
Protocol Non

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 91

Component name GPS

Functionality See class diagram

Resource Usage per op. Get Position Mode on off
Worst Case Exec Time 1 sec 1 fli' Off: 55 s (cold start)
Max. Memory use 128 kB n.a. n.a.

Dependencies Non
Peripherals n.a.

Architectural Style
Topology Bus connection to Console
Multiplicity Point-to-point
Sharing Distributed
Initiative Client/Server
Periodicity Aperiodic
Synchronicity Synchronous
Autonomy Passive
Protocol Non

Component name RouteDB

Functionality See class diagram

Resource Usage per op. Get map find route on off
Worst Case Exec Time 1 sec 11 sec 1 fls
Max. Memory use n.a.

Dependencies RoutePlanner
Peripherals n.a.

Architectural Style
Topology Bus connection to Console, direct connection to RoutePlanner
Multiplicity Point-to-point
Sharing Distributed
Initiative Client/Server
Periodicity Aperiodic
Synchronicity Synchronous
Autonomv Passive
Protocol Non

Component name RoutePlanner

Functionality See class diagram

Resource Usaze per op. Find route
Worst Case Exec Time 11 sec. (assuming route DB performance of 1 sec per request)
Max. Memory use 4Mb

Dependencies RouteDB
Peripherals n.a.

Architectural Style
Topology Direct connection to RouteDB
Multiplicity Point-to-point
Sharing Distributed

www.manaraa.com

92 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Initiative Client/Server
Periodicity Aperiodic
Synchronicity Synchronous
Autonomy Passive
Protocol No

Component name Bus

Functionality Not considered here

Resource Usage per op .. 4 Mbit/ sec
Worst Case Exec Time 40 JlS

Max. Memory use n.a.

Dependencies No

Peripherals n.a.

Architectural Style
Topology n.a.
Multiplicity Point-to-point
Sharing n.a.
Initiative Client/Server
Periodicity. Aperiodic
Synchronicity' Datagram
Autonomy Passive
Protocol n.a.

Since all components obey compatible architectural styles, no conflicts
occur.

2.4.4 Dependability Model

Finally, the timing model as part of the dependability model is
constructed. In order to do that, more details about the underlying hardware
are needed. The display has 1024*1024 pixels each of which may one of256
colors. Hence the size of a videomap is 1 MByte. Given a bandwidth of 4
Mbit/sec, it takes 2 s to send a videomap over the bus. The time needed for
sending a position (a pair of coordinates) is negligible compared to that for
sending video-maps (order of microseconds).

2.4.4.1 Deadline Analysis
To check whether the deadline of 15 s can be met, the worst case

execution times of the actions that need to be performed in order to compute
a route are summed-up, as shown in Table 4:

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 93

Table 4: Worst-case execution times relevant for the deadline of the 'Find route' use case

Operation Time [s]
GPS.get jJosition 1
RouteDB.find route 11
Send m~ over Bus 2
Blackboard. put(map) 0,G2
Total -14

2.4.4.2 Schedulability Analysis
Next we need to make sure that all components are schedulable on their

respective nodes without conflicts. In the sequel, the schedulability per node
is considered.

The 'GPS' component is the only component executing on his node and
the WCET of operation 'GPS.get_position' allows the meeting of the
deadline as shown in Table 4.

For the Route planner and the Route_DB the assumed WCET's guarantee
their schedulability.

For the 'Console' component, it is assumed that the system is running on
a 75 Mhz processor under a real-time operating system. Furthermore, it is
assumed that the processor can read and write 1 word per cycle, hence
75.106 words/so Now, several components and active objects must be
scheduled. Since we work at the architectural level, rate-monotonic
scheduling is assumed because of its simple schedulability condition. Note
that at lower levels of abstraction (e.g. at the code level) where all use cases
need to be scheduled, other scheduling paradigms (e.g. earliest-deadline­
first) might be necessary. In order to simplify the schedulability analysis, it
is further assumed that the deadline of the 'Find route' use case is equal to its
period.

a) The 'Controller' scans the 'Blackboard' with a period of p = 100 ms
(=1,0.105 /-1s). The total execution time is c = 250 /-1s. The resulting
processor utilization thus amounts to c/p = 2,5.10-3.

b) The 'DisplayManager' needs to refresh the screen at 50 Hz, i.e. with a
period of p = 20 ms. The transfer of 1 Mbyte of video buffer by a 75
Mhz processor takes c = 14 ms. Hence c/p = 0,7.

c) The 'KbdManager' needs to poll the keyboard and dispatch commands
with a period ofp=100 ms. Polls to the keyboard cost 10 /-1s, hence c/p =
10-4.

d) For the 'Find_route' use case, the 'Controller' finally needs to write the
map and the route into the 'Blackboard'. It is assumed that for the

www.manaraa.com

94 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

transfer of the map one read and one write instruction has to be executed
(reading from the bus and writing into the buffer) per byte. This results in
a computation time of c = 1 MByte/75 MHz*2 = 14*2 = 28 ms. It is also
assumed that the maximum event rate for the 'Find route' use case is the
inverse of the deadline, i.e. the period is p = 15 s. Furthermore, it is
assumed that the amount of data that is necessary to transfer the route is
negligible in comparison to the map. This results in a processor
utilization of clp = 0,028115 = 1,9.10-3.

e) For reasons of simplicity, the 'Speaker' task, that is only executed
sporadically, is neglected.

To verify the schedulability, Rate Monotonic Analysis (RMA), as e.g.
described in [16], is used. The schedulability criterion for a set of n
preemptable tasks with computation time Ci and period Pi is

neil Pi ~n(i/n -1).
i=1

Scheduling of the above four tasks results in a processor utilization of
approximately 0,65 < 0,75. Hence the 'Controller' tasks are schedulable on a
single processor.

3. CONCLUSIONS

Although architectures become more and more important at all levels of
ICT-systems and for all types of stakeholders, we are just beginning to
understand the requirements for designing a good architecture. Up to now,
architectures have concentrated mainly on the structure of a system and the
interfaces. For complex systems, it is, however, also important to deal with
the behavior of the system and the interaction sequences between the various
components. In general, the types of (orthogonal) design dimensions needed,
the views that different stakeholders have onto an architecture and the
relation between these two aspects need to be investigated in much more
detail before one can answer important questions like:

a) How can we tell whether a project requires a major effort in architecting?
b) How are architectures developed, e.g. who are the relevant stakeholders

and decision makers, what strategies are to be followed (top-down,
bottom-up or a mix thereof) and what should a design methodology for
architectures look like?

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 95

c) How should we deal with the product-process interdependence during the
development of an architecture?

d) Along which, preferably orthogonal, design dimensions should an
architectural description proceed?

e) How can an architecture be described, e.g. in natural language, m
graphical form, by formal methods, or a mix thereof?

f) What views on an architecture are necessary to support the different
stakeholders in a consistent way?

g) How can we assess the completeness and consistency of an architecture?
What criteria should be used to validate an architecture (against the
expectations of its users) and to verify it (against the requirements)?
To what extent can formal methods support the architecting process
and how to verify an architecture otherwise?

h) How can we assess the quality of an architecture? What are suitable
metrics and methods for the assessment of the various characteristics of
an architecture like reusability, scalability, openness (compliance to
standards), etc.

i) How can we manage the architecting function in an organization?

To make the situation even more complicated, each of the above
questions has to be solved at different levels of the system hierarchy:

a) Individual systems,
b) system families that seek to minimize the effort associated with variety as

described in [11] and
c) standard platforms and architectures (e.g. OLE, CORBA, ODP, TINA,

etc.) that try to minimize the development effort by providing
standardized abstractions together with a well defined set of services.

Each level has different demands on an architecture and will therefore
possibly result in different development activities and evaluation criteria.

The first part of this chapter concentrated on the paradigms for
developing a good architecture and especially on the specification of the
behavior and the non-functional properties like dependability and other X­
abilities. In addition, an attempt was made to identify the relevant design
dimensions, the views of the most important stakeholders of an architecture
and the most urgent open research questions. The challenge will be to
integrate these often-contradicting aspects into a consistent framework, to
formalize this framework and to devise the corresponding methodologies.

In the second part of this chapter, an approach for achieving
composability in resource constraint component architectures was proposed.
This method comprises an extension of the component interfaces that allows

www.manaraa.com

96 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

also the specification of resource requirements and interaction styles. The
Car Navigation System example demonstrated this approach with respect to
the verification of timing requirements. Due to the moderate size of the
example, checking that the architectural styles of the components match is
straightforward. Although the approach described is not formal, it paves the
way for mathematical specification and verification of the composability of
software components.

This chapter concentrates on Embedded Systems. Nevertheless, many
arguments also hold for the development of administrative systems. An
important difference, however, is that for Embedded Systems, usually the
worst-case behavior is most critical whereas for administrative systems,
usually the average behavior is most interesting.

Although composability is a key feature for the construction of
predictable and robust systems [15] and for improving the software
productivity by means of component-based software engineering, it is still
not paid sufficient attention in practice. This is astonishing since the basic
principles have been formulated long time ago (see e.g. [23] and [24]). It
remains thus a research challenge to develop suitable methods and
techniques that support the construction of compositional architectures. This
challenge becomes even greater if formal specification and verification
techniques are considered. The proper specification and verification of
components and dependability constraints needs further investigations.

Also the specification and implementation of soft real-time constraints
must be investigated as extensively as this has been done for hard real-time
constraints. This requires a concept that integrates functional and non­
functional properties of a system into one semantic framework. Based on
such a framework, also appropriate specification, design and verification
tools can be implemented. An example of such a formal framework for the
specification and verification of the functionality and the end-to-end timing
constraints of real-time systems can e.g. be found in [29].

ACKNOWLEDGEMENT

I am grateful for the help of Michel Chaudron in working out the example
described in subsection 2.4.

www.manaraa.com

COMPONENT-BASED ARCHITECTING FOR DISTRIBUTED R. T. SYSTEMS 97

4. REFERENCES:

1. Len Bass, Paul Clements, and Rick Kazman, Software Architecture in Practice, Addison­
Wesley, 1998.

2. L. Bergmans and M. Ak~it, Composing Synchronization and Real-Time Constraints, to
be published in Journal of Parallel and Distributed Computing, September 1996.

3. Barry Boehm and Chris Abts, COTS Integration: Plug and Pray?, IEEE Computer,
January 1999.

4. Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling Language User
Guide, Addison Wesley, 1999.

5. RJ.A. Buhr and R.S. Casselman, Use Case Maps for Object-Oriented Systems,
Prentice-Hall, 1996.

6. Bruce Powell Douglass, Doing Hard-Time: Designing and Implementing Embedded
Systems with UML, Addison-Wesley, 1999.

7. K.H. Ecker and D.K. Hammer, A Polynomial Time Scheduling Algorithm based on
Refinement of Schedules, Int. Conference of the Institute for Management Sciences
(TIMS XXXII), Anchorage, Alaska, USA, June 1994.

8. F. Ehrens, The Synthesis of Variety, PhD Thesis, Eindhoven University of Technology,
1996.

9. D. Garlan, R. Allen and 1. Ockerbloom, Architectural Mismatch: Why Reuse is So Hard,
IEEE Software, November 1995.

10. Dieter K. Hammer, Andrew A. Hanish and Tharam S. Dillon" Modeling Behavior and
Dependability of Object-Oriented Real-Time Systems ", Special Issue on Real Time
Object-Oriented Systems of the Int. Journal of Computer Systems Science and
Engineering (IJCSSE), Jan. 1998.

11. H. Hegge, Intelligent Product Family Descriptions for Business Applications, PhD
Thesis (in dutch), Eindhoven University of Technology, 1994.

12. Recommendation Z.120, Message Sequence Charts, International Telecommunication
Union, Geneva 1996.

13. Recommendation Z.120, Message Sequence Charts, Proposal, International
Telecommunication Union, Geneva 2000.

14. I. Jacobson et aI., Object-Oriented Software Engineering: A Case driven Approach,
Addison-Wesley, 1992.

15. Krishna Kavi, James C. Brouwne and Anand Tripathi, Computer Systems Research: The
Pressure Is On, IEEE Computer, January 1999.

16. M. Klein e.a., A Practitioner's Handbook for Real-Time Analysis, Guide to Rate
Monotonic Analysis for Real-Time Systems, Kluwer, 1993.

17. Herman Kopetz, Real-Time Systems: Design Principles for Distributed Embedded
Applications, Kluwer, 1997.

18. Herman Kopetz, The Time-Triggered Architecture, Proc. First IEEE Int. Symposium on
Object-Oriented Real-Time Distributed Computing (lSORC), Kyoto, April 1998.

19. Philip Kruchten, The 4+1 View Model of Architecture, IEEE Software, Vol. 12, No.6,
November 1995.

20. Philip Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley,
1998.

21. J.C. Laprie, Dependability: Basic Concepts and Terminology, Springer, 1992.
22. Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall, 1997.
23. David. L. Parnas " On the Criteria To Be Used in Decomposing Systems into Modules,

Comm. ACM, vol. 15, no. 12, pp. 1053-1058, December 1972.

www.manaraa.com

98 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

24. David. L. Parnas, On the Design and Development of Program Families, IEEE
Transactions on Software Engineering, vol. SE-2, no. 1, pp. 1-9, March 1976.

25. Dewayne E. Perry and Alexander L. Wolf, Foundations for the study of Software
Architecture, ACM SigsoftNotes, Vol. 17, No.4, October 1992.

26. Eberhardt Rechtin and Mark Maier, The Art of Systems Architecting, CRC Press
(London), 1997.

27. S. Ren, G.A. Agha and M. Saito, A Modular Approach for Programming Distributed
Real-Time Systems, to be published in Journal of Parallel and Distributed Computing,
September 1996.

28. Herbert A. Simon, The Science of the Artificial, MIT Press, 1996.
29. Alexei Sintotski, Dieter Hammer, Iozef Hooman, Onno van Roosmalen, DEAL: an

Object-Oriented Real-Time Language, to be submitted.
30. Mary Shaw, Larger Scale Systems require Higher Level Abstractions, ACM Sigsoft

Notes, Vol. 14, No.3, May 1989.
31. Clemens Szyperski, Component Software: Beyond Object-Oriented Software, Addison­

Wesley, 1998.
32. J.P. Verhoosel, D.K. Hammer, E.J. Luit, L.R. Welch and A.D. Stoyenko, A Model for

Scheduling of Object-Based Distributed Real-Time Systems, Journal of Real-Time
Systems, Vol. 8, Nr. 1, Jan. 1995.

www.manaraa.com

Chapter 4

COMPONENT ORIENTED PLATFORM
ARCHITECTING FOR SOFTWARE INTENSIVE
PRODUCT FAMILIES

Initial experiences with component frameworks and platforms
from the consumer appliances and medical equipment domain

Henk Obbink, Rob van Ommering, Jan Gerben Wijnstra and Pierre America
Philips Research Laboratories Eindhoven, Prof Holstlaan 4, 5656 AA Eindhoven,
Henk. Obbink@philips.com

Keywords: Component, platform, architecture, architecting, embedded software, product
families, domain engineering, product lines, product families, component
frameworks, platforms

Abstract: Platform-based product families are strategic business assets. A product
platform represents a corporate asset from which streams of derivative
products of a large variety can be derived and developed (so-called product
families). Platform based development promises to be very effective in
decreasing development cost and lead times while at the same time increasing
product quality and market diversity. Currently industry is in the process of
adapting this approach. In the course of time, electronic products have become
software intensive. Unfortunately, software engineering processes and
technologies that have been developed until now were mainly concerned with
the creation of one product at a time. They do not address well the need for
development and maintenance of a product platform and its derivative
products. In this chapter, it will be shown how component oriented product
family architectures provide a promising development paradigm. This
paradigm solves the inherent dilemma of the need for careful engineering
versus rapid realisation of a large variety of product instances. The approach is
illustrated using examples from the medical and the consumer domain.

www.manaraa.com

100 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

1. INTRODUCTION

Industrial organisations are continuously striving to improve their
product creation capabilities in order to deliver products (goods and
services) on global markets, meeting customer needs, exceeding customer
expectations, with minimal defects, for the lowest life cycle costs, and in the
shortest time.

On many markets, the product's economic life is becoming shorter and
shorter. In order to survive in these markets it is amongst others required to
combine and balance the need for a careful engineering approach (to
guarantee high quality products) with the need for rapid product delivery (to
guarantee short time-to-market) [37]. In this chapter we will focus on the
software part of the overall product creation process (PCP) and describe a
software development approach to achieve high integral quality and timely
products on a large variety of markets.

We use the classification scheme of qualities from [3]. These high
integral-quality and timely products should be balanced by the following
four product quality aspects:

• Qualities that affect the business performance: e.g. time to market
• Qualities that characterise the development process performance: e.g.

reusability
• Qualities that affect the user perceived product performance: so-called

product qualities: e.g. safety
• Qualities that are intrinsic to the product: e.g. conceptual integrity of

its software architecture

In [27] five types of product creation processes for product families were
identified. See Table 1.

Table 1: Life-cycle characterisation of product creation processes

PCP Characterisation of the Product Life-Cycle Phase
Product Creation Process

0,1 The PCP enables the creation OF Embryonic
new families

2 The PCP enables the creation FOR Growth
new families in a known domain

3 The PCP enables the variation ON Mature
existing families

4 The PCP enables the variation Ageing
WITHIN existing families

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 101

These 5 types can be mapped [2] on the standard industry/product
lifecycle, shown in Figure 1:

t .
§
~
" .
I

Embryonic Growth Mature

Figure 1: Product lifecycle

Aging

-time ____ .

In [28] the results were shown of the analysis of the software architecture
on a number of Philips product families covering all the above mentioned
phases, both in the consumer and professional domain. Subsequent
assessment of these product families has led to the conclusion to renovate
the software of two product lines in the mature phase of Figure 1. In this
chapter, we will describe our initial experiences with this renovation, using a
component oriented approach. One product family is from the medical
equipment domain (capital goods) the other product family is from the
consumer appliances domain (consumer goods).

In Section 2, we describe the major principles underlying our product
family engineering approach. Section 3 presents an overview of the
approach. In Section 4 we describe our approach to domain engineering.
Section 5 explains our family architecting approach. Then in Section 6 we
describe experiences in the medical domain while Section 7 reports our
experiences in the consumer domain. In Section 8 we present a discussion
and some conclusions and finally in Section 9 some further research is
indicated.

www.manaraa.com

102 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

2. PRODUCT FAMILY ENGINEERING
PRINCIPLES

2.1 Introduction

In [8] 201 software-engineering principles are described. In this section,
we describe nine product family engineering principles that have been
proven useful in the conception and development of the approach used:

1. Domain orientation
2. Integral quality
3. Dependentindependence
4. Architecture centric
5. Uncoupling domain solution capabilities
6. Hardware abstraction
7. Targeted value at low cost
8. Design for change
9. Co-operating in separation

In the subsequent sections, we will shortly describe each of these
principles.

2.2 Domain Orientation

The product family concept is by its very nature domain specific. We use
the definition as originally given by the Software Engineering Institute.

A software product-linel-family is a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs
of a particular market segment or mission [6].

The experiences described are obtained from projects in the medical and
the consumer application domains. In both domains, a large variety of
products and corresponding product families exist. In the consumer domain
for example we find products like VCRs, TV s, telephones. In the medical
domain, we find products like ultrasound equipment, computed tomography
equipment, magnetic resonance equipment, and x-ray equipment.

One of the fundamental issues that have to be tackled is the scoping of
the domain. One of the heuristics that has proven useful is that of "Think big
act small".

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 103

2.3 Integral Quality

As already stated a major challenge for industry is a timely delivery of a
continuous stream of high integral quality products for a multitude of
customers on global markets.

Leading industrial practice is to use platform and product family
strategies to achieve these goals. In that way, it is possible to maximise the
commercial diversity and minimise the technical diversity of a product
family at a reasonable cost. At the same time, in order to achieve integral
optimal product and process quality, a development approach is required that
optimises, integrates and balances several qualities simultaneously, to satisfY
the numerous stakeholders [10]. More specifically in order:

e To optimise and balance the development process performance
qualities like development cost, modifiability, portability, reusability,
integrability and testability, we decided to use a component paradigm
[36] within an overall reuse [17] and platform [25] strategy for
developing the software. See Section 2.4 and Section 2.8.

e To optimise and balance the intrinsic product qualities like conceptual
integrity, correctness, completeness and buildability we adopted a
strong architecture approach [33], [21], [35], [13]. See Section 4.

• To optimise and balance the user perceivable product performance
qualities like performance, security, availability, functionality,
usability, error handling, satisfaction, again a strong architecture focus
was needed and is described in Section 4.

• To optimize and balance the business performance qualities like time
to market, product cost, projected lifetime, targeted market, rollout
schedule, the above mentioned ingredients are integrated using a
platform [25] based reuse strategy [17] for product families [29], [12],
[37]. See Section 2.10.

For each product family a particular "optimal" mix and match of the
above mentioned qualities has to be determined. We call this the required
integral quality profile or quality footprint of the family. This profile
determines which tradeoffs, choices, and decisions have to be made during
the architecting process.

We will see that despite the superficial similarity the difference in these
requirements lead to interesting variations of the product family engineering
approach. This will be explained in Section 6 and Section 7 respectively.

www.manaraa.com

104 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

2.4 Dependent Independence

Components are the basic building blocks of our products, product families,
platforms and architectures.

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition
by third parties [36].

More precisely a component is the independent unit of deployment. It is
the smallest piece of software that can be combined into different product
configurations. In the software architecture, components are the units of
software reuse, the units of configuration management, the units of testing,
etc. A component implements one or more interface specifications. A
component has an independent lifecycle from its context.

An interface is the unit of specification. It is independent from any
particular implementation or component. One interface is often implemented
by multiple different components, of which one, more or all components
may be present in any single product. In the software architecture, interfaces
are the key enabler of reuse.

For a component to be independently deployable, the component needs to
be well separated from its environment and from other components,
characterised by properties like self-containment and independent lifecycle.
A component therefore encapsulates its constituent features. In addition,
since it is a unit of deployment, a component will never be deployed
partially. Third parties don't expect to have access to the construction details
of all the involved components (except for documentation purposes).

For a component to be composable with other components, the
component needs to be sufficiently self-contained or independent. In
addition, it needs to come with clear specifications of what it requires and
provides. In other words, a component needs to encapsulate its
implementation and interact with its environment through well-defined
interfaces, or explicit dependencies. This leads us to the principle of
Dependent Independence.

In the Sections 6 and 7 of the chapter it will be explained which different
decisions had to be taken in the two domains to arrive at the particular
component models used there.

2.5 Architecture Centric

In the previous section is has been argued that components in products
interact. The architecture is the notion that enables us to reason about the

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 105

meaningful combinations and interactions in a systematic way. Moreover the
benefits of a good architecture [21], [35], [3] are manifold. A good
architecture allows to ensure product features, control complexity, make
explicit decisions, make tradeoffs, manage evolution, organize development,
support system families and large scale reuse and address the interest of the
various stakeholders in a systematic way. Architecture allows us to look at a
system as a whole taking the different viewpoints and concerns from the
various stakeholders with their potentially conflicting quality requirements
from section 2.3 into account.

The field of software architecture research is relatively new, but there is
no lack of definitions for software architecture. We use the definitions as
proposed in [14]:

Architect: the person, team or organisation responsible for systems
architecting.
Architecting: the activities of defining, documenting, maintaining,
improving and certifying proper implementation of an architecture.
Architecture: the fundamental organisation of a system embodied in it's
components, their relationships to each other and to the environment and
the principles guiding its design and evolution.

Architecting is about providing systems concepts, principles and rules. It
also addresses system structuring, making decisions and trade-offs. The main
challenge for the architect is to blend the "user" needs and the available
means (technologies, processes, and skills) into a feasible solution in a way
that satisfies the overall business needs.

2.6 Uncoupling Domain Solution Capabilities

The two application domains described in Section 2.2 contain very
complex products. These products are the result of the combination of a
number of generic solutions that have evolved in the particular domain.
These solutions comprise skills, technologies and processes; together we call
them domain solution capabilities. These domain solution capabilities can be
ideally structured using a typical domain specific "hierarchy"! as shown in
Figure 2. The example is taken from the HP inkjet product family as
documented in [25]. In the centre of this picture we see the core capability
from the domain: e.g., ink processing and paper processing in the printer

! In practice the structuring of the domain solution capabilities need not to be a pure
hierarchy, although this would break the desired uncoupling. An interesting example is the
blurred interface between embedded software and electronics for HW-SW codesign [34].

www.manaraa.com

106 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

domain, audio processing and video processing in the consumer domain,
medical image processing and patient handling in the medical domain.

Added Services

Application Software

Embedded Software

Electronics

Industrial Design

Mechanics

Core
Domain

Capability

Figure 2: Hierarchy of domain solution capabilities

Around these core domain solution capabilities, we see a set of key
capabilities: mechanical design, industrial design, electronic design,
embedded software, application design and service design. For the two
application domains discussed in this chapter we discuss the renovation of
the embedded software, application software and service parts.

Each of the domain solution capabilities in Figure 2 preferably has its
own life cycle. Good modular product architectures provide uncoupling of
the major domain solution capabilities in order to enable their independent
evolution.'In Section 2.7, a component oriented reference architecture will
be shown that deals with some of these concerns.

The ordering and structuring of the domain solution capabilities into a
conceptual framework as described above is the work of an experienced
system architect in the particular application domain and is guided by
experience, best practices, regulations, conventions, ' , . both in the
application domain and in the solution domain. For a discussion of the latter
two notions, we refer to Section 4.1.

2.7 Hardware Abstraction

Through the fundamental choice for components in Section 2.4 our
architectures are by their nature component based and through the focus on
the consumer and medical domain they are by nature application domain­
specific. The terms domain-speclfzc-architecture or reference architecture

www.manaraa.com

COMPONENT ORIENTED PLATFORM A RCHITECTING 107

[13] will be used to define an architecture that is generally applicable in a
particular domain. In this type of architecture the concepts, decisions,
structures, rules, interfaces, reach as far the scope of the domain is defined. It
is often shown how the domain functionality is mapped to the architectural
components. A product-family architecture is similar to a domain-specific­
architecture, but its influences also reach out to all the members of the
family.

In this chapter, we deal with software intensive systems. We therefore
want to abstract as much as possible from changes in the other solution
domain capabilities, either through very small interfaces or through explicit
abstraction interfaces. One of the changes we want to isolate is the quickly
changing hardware. We want to abstract from two major hardware concerns,
the domain hardware concerns and the computing infrastructure concerns,
each having their independent lifecycles. In Figure 3, we present the generic
architecture that holds for most software intensive products in both
application domains.

Domain
Platform

IIF

Domain Hardwa
Abstraction

I

r~

Applications
&

Services

Domain SW Platform

Domain specific

HW

Computing
Platform

IIF

Computing

SW

I

Platform

)

.-

Camp.
HW

-

Figure 3: Domain specific reference architecture

Hardware

In Figure 3, we see abstraction of the two hardware types through two
different software "platforms". The platform notion will be explained in the
Section 2.8.

2.8 Targeted value at low cost

Companies can have three basic, often incompatible, strategies to achieve
the following market leadership goals:

1. They can strive for cost leadership. Provide the cheapest product.
2. They can strive for value leadership. Provide the most valuable product.

www.manaraa.com

108 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

3. They can strive for customer intimacy. Provide the product that is
optimally tuned towards the need of the customer.

Using classical development approaches it is often only possible to
achieve leadership along one of the above mentioned goals.

In order to obtain value AND cost leadership the platform concept has
proven to be applicable [18].

A product platform is a set of subsystems and interfaces that form a
common structure from which a stream of derivative products can be
efficiently developed and produced [25].

Product families on the other hand are needed to enable the targeted
commercial diversity that is required to achieve the third goal.

To achieve leadership along the above mentioned three goals
simultaneously, it is necessary to combine the concepts of the previous
sections into the following modified platform concept.

Our notion of platforms has an architecture that integrates the notion of
components from Section 2.4, with the architecture notions from Section 4.
In the products discussed in this chapter various technologies like
mechanics, electronics, and software are present and are packaged in self­
contained functional components or subsystems. Each of these subsystems
has clear interfaces, be they physical, electronic or software-based to other
subsystems. The platform architecture as a whole has also interfaces to the
external environment. In order to be more flexible we have to relax the
requirement of a common structure. We therefore use the following adapted
definition.

A product family platform is a set of (component- based) subsystems and
interfaces (with their associated processes, documentation and tools)
from which a stream of derivative and composite products (families) can
be developed and produced according to a domain specific architecture or
product family architecture.

All the planned and targeted family products are described by a so-called
product family map shown in the upper part (the time dimension is not
shown for simplicity reasons) of the so-called power tower in Figure 4 [25].
In the middle part, the successive platform generations are shown. In the
lower part the core skills, competencies, and capabilities of the company that
fuel the platform are depicted. They often correspond with the core
competencies of a particular company and comprise for instances the
solution domain capabilities of Section 5.

Product platforms can have various degrees of integration. In some cases
a lot of common functionality, across the different member of the family, has

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 109

already been pre-integrated and tested. In other cases, the platform is just a
set of components (intellectual property) that can be combined according the
platform specific architecture composition rules.

Targetted Market Segments

segment 1 segment 2 segment 3 segment 4

elegance

~

~ economy

Pro

;.".~, f-"' ,-", .. , ""'.~
in the fa of derivati'v'8 products

duct Platform ~
I

Successive Generations of the
Product Platform

-

tfcrm B~'O'k' I ~ \ \ Pia

Consumer Product Manufactoring Organ isational
Insights Technologies Processes Capabilities

Problem and Solution domain capabilities

Figure 4: The power tower: an integrative model of product and process innovation

2.9 Design for Change

Because we are dealing with software intensive product families, we will
now elaborate the "software platform". The software part of the platform can
be seen as the design and implementation of a "domain- machine", a core set
of software subsystems that "propel" the entire system. The variability and
the flexibility of a software platform is determined by the mechanisms that
are provided to combine (compose) the various components and interfaces
during development or use of the systems derived from the platform.
Components are developed and can be plugged into this domain machine to

www.manaraa.com

110 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

provide a variety of products, either as new versions of existing products or
as entirely new derivative products.

The integration of subsystems is greatly facilitated if the internal
interfaces between platform components are clearly defined and use agreed
(standard) mechanisms where they are available.

The interfaces of the software platform are the key enablers, the source of
its power. They capture the "areas" in the platform that are "stable" under
the tremendous change pressure from several sources.

We can at least distinguish the two major types of interfaces:

Internal platform interfaces between platform components. The mechanisms
by which the key subsystems of the platform engine (domain machine)
interact with each other.
External platform interfaces. Between the platform and external systems
(including users) interacting with them.

In addition, we distinguish:

Extensibility interfaces. Interfaces provided by the platform to enable the
required variability and extensibility for add-in components (plug-ins,
applications)
Hardware abstraction interfaces. Interfaces that enable the domain machine
to run on a variety of domain-specific hardware and general purpose
computing hardware.

2.10 Co-operating in Separation

In [17] and [22] it is argued that architecture centric reuse is one of the
most promising reuse strategies at this moment.

Architecture centred reuse is best organised as three separate, but tightly
co-operating types of processes:

<iI Application Family Engineering (AFE). The AFE-process (one per
platform) is responsible for the initial definition and future evolution
of the platform's architecture. This of course in the context of a
normal product planning and product decomposition process. (These
encompassing processes are not shown in Figure 5). The AFE process
comprises the decomposition of the architecture into a number of
major components and the definition of the interfaces between these
components.

e Components System Engineering (CSE). The CSE-processes (one for
each component) develop and maintain the various platform

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING III

components as defined by the AFE-process and sometimes integrating
and testing the common core components into a product platform.

I» Application System Engineering CASE). The ASE-processes (one for
each range or line of products) develop the products, (re) using the
components, or platform (developed by the CSE-processes).

These three processes can be easily mapped onto the dual For-Reuse and
With-Reuse lifecycles [20], in which domain engineering (domain analysis,
domain design, and domain implementation) is uncoupled from application
engineering (application requirements, application design, and application
implementation). The AFE and CSE processes are part of the domain
engineering activities, while the ASE process is the same as application
engineering.

In Figure 5, the relevant platform engineering processes are shown, with
the key deliverables: Domain Terminology, Reference Requirements,
Reference Architecture, and Reusable Components.

Domain

Market

Expertise

Component System
Engineering

Application System Engineering

Figure 5: Platform engineering processes

2.11 Product family engineering principles and approach

The above mentioned principles contribute:

domain modelling
emphasis on architecture to achieve quality attributes, to reason about the
system as a whole, and to provide a framework for components

www.manaraa.com

112 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

- use of components to enable independent evolution
uncoupling of different domains, and abstraction of domain hardware and
computing infrastructure
use of product platforms to address multiple market segments

- use of interfaces to enable controlled extension, variation and change
- a hierarchical platform engineering process

Together, these contributions constitute the key elements of our product
family engineering approach, discussed in the subsequent sections.

3. PRODUCT FAMILY ENGINEERING APPROACH

This section sketches the process for our product family engineering
approach, incorporating the "Co-operating in Separation" principle. It
provides steps that are more detailed. We have divided the overall process in
a number of subprocesses, see Figure 6. It is important that separate people
or projects are responsible for these subprocesses so that they check each
other. The co-ordinating part is the family engineering process (previously
called Application Family Engineering or AFE). When family engineering
has proceeded far enough, it is possible to start platform and product
engineering (previously called Component System Engineering, CSE, and
Application System Engineering, ASE).

Figure 6: Top Level Processes

Platform engineering develops platform components and product
engineering develops products using these platform components. Both of
them receive guidance from and provide feedback to the family engineering
process. Apart from that, these two kinds of subprocesses can typically be
organised along the same lines as in single product development (see, e.g.,

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECT/NG 113

[16]). Note that often there is one platform engineering subprocess (although
there could be more), but there are typically several product engineering
subprocesses, either in parallel or consecutive.

The family engineering process is different because it explicitly deals
with the family development. We propose to subdivide it into activities as
shown in the following table.

Table 2: Family engineering activities and results

Activities Results

1. Defining the process Detailed process definition

2. Informal domain analysis Business context and scope

3. Requirements specification Use cases

4. Analysis Analysis object model

5. Conceptual architecting Reference architecture

6. Defining the product family Precise family definition

7. Family architecting Product family architecture

8. Support and supervision Integrated and targeted products

These activities are not performed sequentially, but in parallel, although
they typically have different intensities at different times during
development (see [16]). In the rest of this article, we concentrate on the five
activities from requirements specification to family architecting. The
informal domain analysis activity is very important for family engineering,
but a detailed account is outside the scope of this article, so we refer the
reader to [9].

We groups these five activities under two headings: Domain Engineering
and Architecting for product families to be discussed in Sections 4 and 5.

4. DOMAIN ENGINEERING

4.1 Domain Engineering Concepts

One of the most valuable principles in developing a product family is
domain engineering. Here we define a domain as a conceptual space of
possible systems. In most cases, this space is multidimensional and very
large, possibly infinite. The members of our product family or population

www.manaraa.com

114 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

form a carefully chosen, typically finite, subset of this space. Now the
principle of domain engineering tells us to devote our attention in the
development process as much as possible to the domain as a whole, and as
little as possible to the individual systems inhabiting it. Below we will
describe in more concrete terms what this means for the various
development activities.

Systems

Figure 7: Domains and systems

Several other concepts are important in domain engineering. First, the
scope of a domain is a characterisation of the extent of the space of possible
systems, or in other words, a definition of which systems do and which
systems do not belong to the domain. In this definition, the systems can be
characterised based on their functionality, but also based on cost,
performance, or other non-functional aspects. For example, one may define a
domain of TVs that cost less than $500, or a domain of MR (Magnetic
Resonance) scanners with a magnetic field of more than 1 Tesla.

In this context, it may be useful to divide a domain into subdomains.
Here a subdomain can be a subspace of the original domain, in the sense that
it contains a subset of the original set of possible systems (we could call this
a system subdomain), but it can also consist of specific subsystems that are
used as building blocks for the original set of systems (a subsystem domain).
An example of the first would be to divide the domain of medical imaging
systems into sub domains such as CT (Computed Tomography), MR, and x­
ray systems. An example of the second would be to consider the sub domain
of gradient subsystems used in MR (the subsystems that cause a precisely
controlled gradient in the magnetic field). Conversely, a domain that
contains another domain is called a superdomain.

Let us use the term primary domain for the domain that matches the
scope ofthe development for a product family at a given time. When starting

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 115

a product family development effort, it is extremely important to quickly
gain a good idea about the scope of this primary domain, so that the
solutions developed are not overly generic or too specific. At the same time,
it is useful to explicitly identify relevant subdomains and superdomains, so
that potential future extensions and specific optimisations are not blocked by
decisions that only apply to the original domain. For example, when
developing a family of TV s, one should also consider the population
superdomain that also contains VCRs or even TVNCR combinations,
because they might all use the same tuner components. On the other hand, by
considering the subdomain of TVs for the North American region, one can
devise specialised solutions for solving some image quality problems that
plague the NTSC signal format.

Within a domain, the diversity among the systems inhabiting it is
localised in certain variation points. (More precisely, we define a variation
point as a single dimension in the multidimensional domain space.) This
diversity can have different sources. On the one hand, there are the
observable features, which may be of a functional or a non-functional nature.
On the other hand, the same features can often be realised by different
technological options, and these are not directly observable by the user. For
example, the possible systems in the TV domain can differ in the size of the
picture tube, the number of loudspeakers, the presence of teletext, which are
all observable. On the other hand, the TV s can also differ in whether the
sound processing is done by a dedicated chip or by a DSP, and this
difference is not observable from the outside.

Furthermore both the features and the technology are most likely to
change over time, and domain engineering should certainly take that into
account. Features change on the one hand because the systems are being
used in a new way (e.g., TV channel hopping brought the need for a remote
control), and on the other hand because in the market the products need to
distinguish themselves from the others in the family and certainly from
competitors' products. Technology changes are sometimes forced by the
environment (e.g., when a supplier no longer supports the currently used
version of the operating system) and sometimes they are enabled by
advances in the developing company. Developing and maintaining a
roadmap is a good way to ensure that all these changes do not come as
surprises but are planned for.

Sometimes a distinction is made between problem domain and solution
domain. Here the problem domain refers to those aspects and entities that are
relevant to the users of the systems in the family, while the solution domain
covers, in addition, the aspects and entities that are relevant in building the
systems. Consequently, this distinction makes most sense for systems where

www.manaraa.com

116 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

the users are relatively unfamiliar with how the systems are implemented
(typical for consumer electronics).

Domain engineering takes place in all phases of the development of a
product line, and can therefore be subdivided into activities such as domain
analysis, domain architecting, and domain implementation (See Figure 5).
Below we briefly describe our approach to domain analysis, while the next
chapter will sketch some elements of domain architecting.

4.2 Domain Analysis

Domain analysis, the first step in domain engineering consists of
requirements specification and structural analysis. In modern software
development methods [11] [16], requirements specification is mostly done in
the form of use cases [15] where the interaction of the users and the system
and its effect on the system are described. Several notations can be used for
this purpose, ranging from English text to the use case diagrams and
sequence diagrams ofUML [4].

Mostly this requirements specification activity is followed by structural
analysis, typically in the form of object-oriented analysis (OOA) [7]. The
result is an analysis object model, often again expressed in UML using
mostly class diagrams.

The special thing about doing this for a domain, instead of for a single
product, is that the requirements specification and the analysis model cover
the whole domain. Furthermore, it is important to precisely express the
variation points in the requirements specification as well as in the analysis
model. Some techniques for doing this are provided by the FAST method
[37]. Especially in our work on professional electronic systems, we have
good experiences with a domain analysis approach where we integrate
requirements specification with structural analysis [1].

The result of this is a precise and extensive description of the required
functionality for all the systems in the domain, which makes it possible to
specifY an individual system in a very concise way by just fixing the
variation points. In this way it becomes very easy to define our product
family (as a finite subset of the domain) and to be flexible in changing this
definition as circumstances require. Another important point is that, although
the approach enables a large degree of diversity between the systems in the
product family, it discourages unnecessary diversity.

Finally, the analysis object model forms an excellent starting point for
developing a design object model for our product family. Broadly speaking
there are two possible approaches for doing this: transformational or
elaborative. In the transformational approach, a design model is developed
disjoint from the analysis model, but of course based on the information

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 117

from the analysis. In the elaborative approach, the design model is developed
as an extension of the analysis model. Both approaches have their own
advantages, but also their own difficulties [19]. In any case, the detailed way
of how the design model is developed largely depends on the architecture,
which is the subject of the next section.

5. ARCHITECTING FOR PRODUCT FAMILIES

As explained in the previous section, developing a product family is best
done in a domain engineering approach, where the attention is directed at the
domain as a whole, rather than at individual systems. This also holds for
architecting, the activity of developing an architecture, and therefore what
we describe in this section is essentially domain architecting, even though
we will often speak of a product family architecture.

5.1 Reference Architecture and Family Architecture

Architecting is making decisions. First, these decisions apply to the
structure of the systems to be built. This involves choosing an architectural
style (e.g., layered, multi-tiered, blackboard, etc.) and, depending on that
style, choosing and identifying the structural elements, such as layers,
subsystems, packages, components, and interfaces. (Note that here
"identifying" does not mean "defining in full detail". This can be done later
by the responsible designer under supervision of the architect.) Second,
architecting involves identifying concepts and mechanisms to be used in
connecting the structural elements together. Often these concepts and
mechanisms take the form of design patterns, but ideally they are also
supported by reusable implementations provided by one or more of the
structural elements.

Keep in mind that most architectural decisions have a more profound
influence on the quality attributes of the resulting systems than on their
functionality [3].

In domain architecting, the above decisions can have different scopes.
Global decisions apply to all systems in the primary domain and to all
structural elements from which they are built. Local decisions apply only to
a single system or a single element. Most of the decisions, however, have an
intermediate, "regional" scope: they apply to a subset of the systems or to a
subset of the structural elements, in other words, to a subdomain. Such
subdomains can be defined in various ways, for example:

www.manaraa.com

118 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Geographical: Where are the products sold? This often has implications
for the standards and conventions that the products must comply with.
Organisational: Which development department is responsible?
Different departments often have their own identities and cultures, and
often it is best to respect these rather than to force uniformity.
Technical: What kind of system or element is it? Certain quality
attributes can have different importance for different systems or
elements, and therefore the architectural decisions determining them may
differ.

Obviously, it is important to make explicit the subdomain to which a certain
decision applies. Nevertheless, in practice this is often left unclear. Also note
that most often architectural decisions should not be mandatory, but should
have the character of a guideline, which can be overridden inside a narrower
subdomain if there is a good reason to do so.

Together, all these architectural decisions for a domain establish a
reference architecture. This reference architecture will typically need several
views [21] to be expressed completely. In fact, it will sometimes need
several views of the same kind to express the different decisions for different
subdomains.

When the precise subset of the domain that is to be developed as a
product family has been chosen, it is often possible and necessary to make a
number of more specific decisions. Since these decisions do not apply to all
the systems in the domain, but only to the specific family, we will call them
the family architecture. Starting from this family architecture, a lot of details
must then be added in order to arrive at a design object model, from which
the code can be derived in a more or less straightforward way. As mentioned
above, the analysis object model must be taken into account here.

Often it is useful to distinguish a conceptual architecture and a technical
architecture. Here by conceptual architecture we mean a representation of
the architecture in terms that are independent of the underlying computing
infrastructure (operating system, programming language, middleware, etc.),
whereas the technical architecture includes the choice of that computing
infrastructure and the mapping of the conceptual architecture onto that
infrastructure. This same distinction can be made between conceptual and
technical design. The advantage of this distinction is that in the conceptual
architecture and design one can concentrate on the essentials without being
distracted by the many details involved in mapping them onto an operating
system, programming language, etc. We can summarise the relationships
between requirements, conceptual and technical architecture and design in
the following picture.

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING

Functional
Requirements

Analysis
Object
Model

Conceptual
Design
Model

Nonfunctional

rchitecture

Technical
Design
Model

Figure 8: Relationships between requirements, architecture, and design

5.2 Supporting Diversity

119

One of the most important things to be described in a reference
architecture is the roles of the various components from which the systems
in the family will be built, and the interfaces between them. Because such a
component is a special kind of module (i.e., a package of work for a small
group of designers) the usual heuristics apply here, e.g., maximise cohesion
and minimise coupling. But here, in addition, the architect must take the
diversity in the domain into account. Since we want to build a system in our
family by combining a number of components, it is important that each
variation point is allocated to a single component, as much as possible. This
is because whenever several components are responsible for dealing with a
single variation point together, they cannot be deployed independently, or in
other words, their meaning as independent units of deployment is
compromised. In domains where components can be recursive, in the sense
that they can themselves be built up from components, the reference
architecture does not have to specify the complete component hierarchy, but
may stop at a suitable level.

There are roughly two ways in which a component can handle the
diversity caused by one or more variation points:

www.manaraa.com

120 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

The component may have a number of parameters, called diversity
parameters, that can be given values according to the choice in these
variation points.

- The role of the component itself or of a subcomponent can be played by
one or more out of a set of alternative components with (approximately)
the same interfaces in both directions. Moreover, components can be
connected together in different ways. We call this mechanism a
component framework.

It is not always very clear which mechanism to choose. A heuristic that often
works is to use the diversity parameter mechanism for quantitative diversity
and the component framework mechanism for qualitative diversity.

5.3 The Platform Approach

When this subdivision into components has been defined, components
can be clustered according to their development life cycles and their usage in
the various systems in the domain. If one finds a sufficiently large cluster of
components that have similar life cycles and are used in multiple systems in
the planned family, this cluster may be developed as a platform. Here not
only the architecture counts, but it is also important that the development
organisation matches or can be made to match the platform model. Keep in
mind that it is possible to distinguish more than one platform wherever that
is useful from an architectural and organisational perspective.

In the end, the idea of the platform approach is that individual products
can be developed relatively quickly by assembling and configuring a number
of components from the platform(s) and possibly adding a few product­
specific components.

The platform group develops a platform, which is delivered to the
product groups. The platform consists not only of software components, but
also of other parts, including requirement and design documentation,
interface specifications, architectural rules and guidelines, tools, test
environments, user manuals, etc. The platform contains those entities that are
relevant for several family members (not necessarily all). The product
groups should not modify these entities, but combine and extend them in
order to come to a specific family member.

For each family member, the family architecture is the baseline. A
platform contains some of the components identified in this family
architecture. Some of these components are fixed, i.e., they are generic for
all family members. The component frameworks offer the possibility to add
specific components to the family member to realise specific behaviour.

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 121

Furthermore, diversity parameters are given a value for each specific family
member.

In Figure 9 below, the usage of a platform is illustrated. The platform is
used to create different products. Of course, when more than one platform
were used, the picture would become more complicated. What the figure
also illustrates, is that the platform will evolve over time. For example, it
may be the case that some software component that was developed for a
specific family member becomes applicable for other family members. Then,
this software component can be integrated into the platform.

Over time, several releases are made of the platform. Each release
contains a set of compatible components. When a component is modified in
a new release, a new interface has to be added to the component, since it is
not allowed to modify existing interfaces. The component itself keeps the
same identity. This way, both existing and new family members can use the
same components. An important question is how long old interfaces still
have to be supported.

Figure 9: Using the platform

5.4 Architecture Verification

A good software architecture is the basis of each large software system
with a long lifetime. A specification of the software architecture of a large
system can usually be found in the system design documentation. However,
the architecture ofth~ implementation (the implicit architecture) may deviate
from its specification in the system documentation (the specified
architecture). By means of software architecture verification, it is possible to
formally verify in an automated way whether the implicit architecture of a

www.manaraa.com

122 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

system is consistent with its specified architecture. This helps to maintain the
conceptual integrity of the system [3]. More on architecture verification can
be found in [31].

6. EXPERIENCES IN THE MEDICAL IMAGING
DOMAIN

6.1 Product Characteristics

Philips Medical Systems is one of the worlds leading suppliers of
medical imaging equipment. Its product range includes conventional x-ray,
computed tomography, magnetic resonance imaging, and ultrasound
equipment. In this section, the experiences of a product family in this
domain are discussed. Some of the main characteristics for this product
family are:

ill Compared to consumer products like televisions and DVD players, as
discussed in section 7, only a relatively small number of products are
delivered in the field. Instead of the high volumes for the consumer
market, only a few thousand products are made. Almost each of these
products is different due to high configurability and customisability.

II The delivered products must be maintained for a long time, about 10
to 15 years. Furthermore, updates of mechanical, hardware and
software components can be made in the field during the lifetime of a
product by field-service engineers.

€I New features must have a short time-to-market. It must be noted that
products in this domain with digital image processing have been
around for more than ten years. Consequently, the basic functionality
is not the main issue anymore but the specific features that the various
customers request. These additional features add to the complexity of
the product family.

e If a product does not operate according to the specification, it may be
potentially dangerous to the health of the patients and the personnel.
Consequently, high demands are placed on the safety and reliability of
the products. For example, the products must be approved by the FDA
(Food and Drug Administration) before they are admitted to the U.S.
market.

(!) The product family covers a number of system subdomains. A number
of groups exist, each having expertise on such a subdomain. The

www.manaraa.com

COMPONENT ORIENTED PLATFORM A RCHITECTING 123

development of the various family members is distributed over these
groups.

In order to deal with these characteristics, reuse over the family members
is needed. This is achieved by developing a common platform for all family
members.

6.2 Domain Analysis

Domain analysis has been performed for the medical imaging product
family as described in section 4.2 and in [1]. The resulting analysis object
model for this family became quite large, containing about 100 class
diagrams, 700 classes, 1000 relationships and 1500 attributes.

The general feeling with the project crew is that this way of requirements
modelling and specification lays a solid and stable basis of shared
knowledge for further development and that the effort was well spent. Even
when the specifications changed somewhat during the project, only minor
modifications to the object model were necessary.

6.3 Product Family Architecture

Based on the products that will be part of the family, a product family
architecture is defined. For this architecture, a number of architectural
principles have been identified [32]. Summarising, the main principles are:

., Layered Architecture
The system is decomposed in a number of layers. The main layers are

Infrastructure, Technical and Application. The Application layer contains
the application knowledge, e.g. the procedures to acquire images, and
analytical functions. The Technical layer provides an abstraction of the
underlying hardware to the Application layer, e.g. image processing
functions. The Infrastructure layer provides basic facilities to the other
two layers, like logging and field-service facilities. These three layers are
internally decomposed further.

., Independence of Units
The system is decomposed into a number of units. A unit contains a
coherent set of functionality, and deals with a subsystem domain of the
complete identified family domain, e.g. acquiring images or processing
images. In order to avoid a monolithic design, units should be self­
contained and de-coupled.
With a self-containing unit is meant here that when such a unit is added
to the system, no adaptations of other parts of the system are required.

www.manaraa.com

124 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

This means for example, that each unit must do its own error handling
and logging and provides its own field-service functionality for usage by
the field-service engineer. These kinds of functionality are called aspects
[26]. Architectural rules concerning these aspects are formulated that
apply to the units. Support is provided for realising aspects by the
infrastructure layer.
Furthermore, to avoid a monolithic structure, the units should have no
direct knowledge of each other when this is not required. To achieve this,
a number of concepts are applied, e.g. event notification and facilities
based on the blackboard pattern [5]. Various units are connected to such
a blackboard facility, which enables these units to achieve combined
behaviour without direct interaction between them.

Applying these principles results in a system decomposition into units,
divided over three layers, schematically shown in Figure 10. The
decomposition of the technical layer is based on the various hardware
devices, e.g. image processing hardware, the application layer is
decomposed based on the functional areas in application workflow, e.g.
acquiring images, analysing images, and the decomposition of infrastructure
layer is based on the infrastructure facilities, e.g. logging and field service.
The actual product family architecture contains a little over 30 units.

Figure 10: Schematic product family architecture

The analysis object model focuses on the functional requirements; the
product family architecture takes all quality attributes into account. Together
they form a basis for the design, as described at the end of section 4.2. This

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 125

is achieved by assigning classes from the analysis object model to units in
the architecture, and the design activity is responsible for defining additional
design classes to form a complete design.

6.4 Supporting Diversity

Diversity in the product family is caused by diversity in features and
diversity in realisation technology. In our medical product family, examples
of diversity in features are different procedures for acquiring images,
different ways of analysing images, etc. Examples of technology related
diversity are new implementations of image processing hardware and the
usage of faster and larger hard disks for image storage. It is important to
analyse both the diversity and the commonality between the family
members.

The product family architecture presented in section 6.3 only specifies a
high level view and applies to all members of the product family, i.e. each
unit is in principle present in each family member, although some units are
optional. Each unit consists of one or more components. In the previous
section, the variance is not made explicit yet. However, each unit may
contain variation points at which variation occurs for the various family
members.

The issue how to support this diversity is closely related to the following
two architectural principles that are defined for the medical imaging product
family:

1. binary reuse of components
2. division of the product family development in a generic part and member

specific parts

Based on these principles, components frameworks are used as a
mechanism for supporting diversity on an architectural level, see also [38].
Next to that, diversity parameters are used for component internal diversity.
The component frameworks are for example used for analytical functions;
the diversity parameters are for example used to realise country specific
setting.

As a result, a generic skeleton [23] is constructed which is based on the
unit structure and the generic components within these units. It is possible to
construct such a skeleton because the various subsystem domains are
relevant for all family members. The generic skeleton is schematically
shown in Figure 11. Here, the unit relations and the dark grey parts form the
generic skeleton. The light grey parts represent the specific plug-ins that can

www.manaraa.com

126 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

be added to the predefined variation points in order to create a specific
family member (configuration parameters are not shown graphically).

Standard technology is applied as much as possible, because of benefits
like better tool enviroments and available knowledge of the software
developers. For this family DeOM has been used as realisation technology
for the components, and the interfaces between components are described in
IDL.

For a unit that has variation points, either supported by component
frameworks or diversity parameters, the functionality it offers depends on
the specific configuration of that unit in a family member. Each unit
provides an availability interface that allows the clients of that unit to
determine the available functionality of that unit configuration at
initialisation-time. This way, the clients can determine which functionality
they can offer themselves.

Generic

Specific

Figure 11: Generic skeleton and specific components

6.5 Platform and Evolution

The platform approach applied for the medical imaging family is as
described in section 5.3. One platform group is responsible for the generic
skeleton and the specific parts that are relevant for several product groups.
The product groups are organised according to market segments, the system
subdomains. Such a product group has to configure the system based on the

www.manaraa.com

COMPONENT ORIENTED PLATFORM A RCHITECTING 127

platform provided by the platform group, augmented with additional
components that are specific for a family member.

The evolution of the platform is managed as illustrated in Figure 9. A
release of the complete platform is made at a planned moment in time. The
advantage of this approach is that the elements belonging to the platform are
integrated and tested together in a central place, thus managing the
complexity of these tasks and sharing testing effort. Especially for a medical
imaging family, where safety and reliability are very important, and where
integration testing takes a considerable amount of effort, testing requires
special attention. Although the FDA deals with admission of products, not
families, it is useful to test the platform as an integrated package, since the
platform as a whole can be considered as one of the components from which
a specific product is built. This integrated approach is possible since the
generic skeleton is shared between the family members, providing a
common structure and well defined variation points. An alternative approach
would be to release the various units independently, leading to more
flexibility. The disadvantage is that less can be said about the integrability of
the individual units and test effort must be repeated.

The product family will evolve over time. In the architecture a number of
principles have been applied that support evolution of the family. Examples
of these principles are layering (to de-couple the application domain from
technical domain), independent units (to reduce dependencies) and
component frameworks (which allow extension with new functionality).

Interfaces are important entities when considering evolution; when a
component is modified, a new interface has to be added to the component.
The interfaces related to the medical imaging platform are divided into three
groups (see also section 2.9): interfaces within the generic skeleton (platform
internal interfaces excluding the extensibility interfaces), interfaces towards
the specific plug-ins (the extensibility interfaces), and interfaces towards the
environment of the system (platform external interfaces). The difficulty to
manage the evolution of the interfaces of these three groups increases in the
order in which they are listed because of the growing size of the community
that is involved.

6.6 Documentation

A component has its corresponding requirement and design
documentation. These documents contain class and sequence diagrams
specified with UML. Furthermore, special attention is paid to the various
aspects as identified by the system architect, e.g. error handling or
initialisation. The documentation of each component must address each
aspect in a separate section.

www.manaraa.com

128 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

The concept of adding a specific component to a generic component
framework to realise specific behaviour also applies to the documentation.
For both generic components and the specific plug-ins, separate documents
are written. To find out the available functionality of a specific software
component configuration, the corresponding documents can be viewed
together.
The interfaces provided by components can be divided into three groups, viz.
component specific interfaces, interfaces that are defined by a component
framework that must be implemented by its plug-ins, and interfaces that are
prescribed by the infrastructure and that relevant for a large number of units
in the system (e.g. for initialisation purposes). The component developer is
responsible for specifying the component specific interfaces. During
specification and review, two other parties are involved: a member of the
architecture team to guard the conceptual integrity, and the various clients of
the interfaces. In case of an interface between the generic skeleton and
specific parts, members of both the platform and product groups are
involved, since the ownership lies with the platform group, but the product
groups must use the interfaces.

6.7 Architecture Verification

For the medical imaging product family, architecture verification is being
applied, as described in o. Especially for this family, architecture verification
is important, namely for the following reasons:

e The product family is very software intensive and complex. To
manage complexity, the implicit architecture must meet the specified
architecture to be able to manage the complexity.

e The product family will have a long lifetime, approximately 15 to 20
years. During this time, maintenance must be performed, new features
must be added, etc. This is only possible when the architectural
concepts are applied consequently throughout the system.

q,\ Finally, work on the product family is performed at multiple
distributed development sites. It is important that everywhere the
same architectural concepts are being applied, to support
communication between groups. This is especially of importance
when, for example, a component developed by an application group is
integrated with the platform.

The architect of the product family has specified a number of
architectural rules that are checked automatically. Some of these rule have a
global scope, others a regional scope. Examples of the checked rules are:

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 129

• The usage relations between units falls within the allowed usage
relations as specified by the architect.

• All units must use certain infrastructure interfaces.
• Application units must provide an application service interface.
• Field-service interfaces, which are provided by various units, may

only be used by the field-service unit.

7. EXPERIENCES IN THE CONSUMER DOMAIN

7.1 Product Characteristics

Consumer Electronics (CE) products such as televisions, set-top boxes
and digital versatile disk (DVD) players embed a rapidly increasing amount
of software, following Moore's law closely. CE products are sold in high
volumes at competitive prices, making the bill of material an important
issue. Consequently, the products are often severely resource constrained, at
least from a computing point of view. High product quality is required, since
repair in the field - though not impossible - is not attractive for the image of
the company.

Philips produces a large diversity of CE products. Televisions already
form a product family with over 100 variants. CE products have many things
in common but have also many differences. Some members are even almost
completely disjoint (e.g. a CD player and a television). This adds another
dimension to product families - we'd rather speak of product populations.

Single

Product

~ I
television

Product

Family

i

Product Application

Figure 12: The domain hierarchy for CE products

Everything

All I
~~

Philips products are developed by multiple business groups at various
locations all over the world, making software development inherently
distributed. While the size of the software increases rapidly, the development
time must decrease significantly to follow market trends quickly. Therefore,
a substantial amount of reuse is required. We feel that only a compositional
approach using 'subsystem platforms' can implement this effectively.

www.manaraa.com

130 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

7.2 Software Components

Let's start with our foundation: a lightweight component model called
Koala [30] inheriting from Microsoft's Component Object Model (COM)
with an implementation scheme that induces no extra overhead (code size
and performance) as compared with traditional (non-component)
programming. Explicit design goal was to enable evolution to COM when
our products become less resource constrained.

Other inspiration sources were Visual Basic and hardware rcs. As in
COM, we define interfaces as small groups of functions, and model variation
with the absence or presence (design-time or run-time) of such interfaces. As
in Visual Basic, we have an explicit notion of glue code, as we do not
believe that we can build a large variety of products by merely clicking
components together. As in hardware, we make not only provides interfaces
(outputs) explicit, but also all requires interfaces (inputs), and allow these to
be explicitly bound by third parties to other components.

With respect to requires interfaces, COM components have many implicit
context dependencies (e.g. the use of the Win32 platform), and only few
explicit ones (such as connection points). Our approach (also inspired by
[24]) forces developers to make all context dependencies explicit, allowing
software architects to monitor and constraint these dependencies. Third party
binding also enables the addition of glue code for e.g. monitoring calls or
adding simple functionality. Our requires interfaces are in fact an example of
variation points [17].

Figure 13: An example software component

The component model is essentially recursive. Compound components
contain other components and define their mutual binding. Such compound
components can have interfaces themselves; without external interfaces, they

www.manaraa.com

COMPONENT ORlENTED PLATFORM ARCHITECTING l31

are called 'configurations'. Interfaces are defined in an interface description
language (IDL), components in a component description language (CDL).
Figure 13 graphically illustrates our CDL, where components are
represented by rectangles, interfaces by squares with embedded triangles,
and glue code by 'documents' and 'trousers'.

7.3 Handling Diversity

The Koala model supports diversity by parameterisation (explicit and
implicit) and by allowing structural variation.

A component can be parameterised with a large number of parameters
(cf. properties in Visual Basic), grouped into diversity interfaces (usually
drawn at the left side of components). The parameters (or functions) in such
interfaces are assigned values in glue modules. These values may be
expressions that use parameters or functions of other (diversity) interfaces of
subcomponents (we call this the diversity spreadsheet).

Structural variation can be obtained by creating different compound
components containing similar sets of subcomponents connected in different
ways. We support the selection of alternative components (a form of semi­
dynamic binding) with switches that parameterise the binding between
components. Our model does not support plug-ins, but it does allow for
'plug-ans' (components plugged into the border of a component).

We distinguish between optional and mandatory interfaces. Optional
requires interfaces need not be connected; components must query for the
presence of an implementation behind them. This is in fact an implicit
parameterisation of the component. Components can assume that all
mandatory requires interfaces are implemented without the need for a query.

Application & Services

x

D

Platform

Figure 14: Layers and subsystems

Operatina & Development
System

L

www.manaraa.com

132 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

7.4 Architectural Concepts

We divide our software into three layers (see Figure 14): the computing
platform, the audio/video platform and 'services and applications'. Each of
these layers has an independent evolution, driven by separate forces
(innovation in computing hardware and operating systems, in signal
processing hard- and software, and in user interface concepts). In addition,
the capabilities for developing software in each of these layers are
substantially different.

We fmther divide the software into subsystems. Subsystems implement
subsystem domains as introduced in section 4.1. They also have independent
evolution and require specific capabilities. A subsystem is technically a
compound Koala component (but see below). Subsystems form large units of
reuse within the product population.

Subsystems are composed of smaller components. These form the units
of reuse within a subsystem domain; i.e. they can be used to create different
variants of subsystems. A basic component consists of one or more modules
(a pair of C and H files), and is typically implemented by a single developer.

Actually, our term subsystem is overloaded, as we use it both for a single
compound component as part of a single product, and as a package of
components and interfaces. Such a package adds a notion of scope to our
model, as it can contain private and public interfaces and components. A
package is really a unit of development, while a subsystem is a unit of
deployment. We usually mean package when we use the term subsystem.

Subsystem diversity is implemented by offering different compound
components in a package (i.e. different combinations of basic components),
providing similar (but not equal) functionality in a subsystem domain. Each
compound component can still be parameterised. Packages sometimes also
contain small public components that can serve as reusable glue between
subsystems.

7.5 A Common Platform Approach

Component technology is one part of the solution for creating a large
variety of products; a platform approach is the other part. Our platform
consists of a global architecture plus a set of reusable subsystems. Products
can be created by combining subsystems. There is no sharing of software
between products other than through the reusable subsystems! Reuse of
software that first emerges in a product is obtained by integrating or
promoting the software into a subsystem.

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 133

Figure 15: The three types of processes, and the subsystem product relation

Three types of processes are defined: (1) definition and evolution of
architecture, (2) definition, implementation and evolution of subsystems, and
(3) development of products. At each moment in time, there is precisely one
process of type (1), but there are many instances of the second and third
types. Many subsystems and products are developed in parallel; moreover,
they usually have independent life cycles!

It is interesting to note a difference between the consumer and the
medical domain here. Whereas in the medical domain, all subsystems (units)
are developed in synchronisation and integrated into a single platform that is
released to product developers, in the consumer domain subsystems are
developed and released independently from each other. In the 'medical'
approach, the responsibility for the integration and testing of the subsystems
lies with the platform team at the expense of a slower release cycle. In the
'consumer' approach, release cycles can be much quicker (i.e. directly
between subsystem team and product team), but the responsibility for
integration and testing shifts to the product teams.

7.6 Architecture

We make a distinction between global and regional software architecture.
The global architecture identifies the subsystems and it defines the code and
document architecture, but it only chooses a few concepts and styles. All
other concepts and styles are defined at the regional level. A region is either
a single subsystem or a set of closely related subsystems. For example,
definition of the interfaces of a subsystem is handled at the regional level,
although essential interfaces are sometimes identified at the global level.

The reason for minimising global architectural decisions stems from our
large variety of products. We cannot choose all concepts, styles and
mechanisms globally: different types of products may need different choices.

www.manaraa.com

134 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

We have to be very careful when making global choices, balancing the
advantage of uniformity against the disadvantage of loosing flexibility.

The code architecture is an example of a global choice, dictated by our
component model. Had we used the binary compatibility of COM as our
technology, this would not have been necessary.

7.7 Process and Organisation

Although our total development is intrinsically multi-site, we require that
each subsystem and each product be developed at one site. Communication
between development sites is far from optimal: communication facilities
have improved considerably over the past years (e-mail, video conferencing)
but time (and cultural) differences between the continents are still dominant.

Architecture often concerns making compromises (e.g. within technical
and organisational constraints). When identifYing subsystems, we'd rather
compromise on subsystem boundaries than allowing a subsystem to be
developed at more than one site. Note that in the end, the organisation should
be adapted to the technical architecture, not vice versa. This can be done by
defining capability centres that correspond with the sub-product domains.

A common choice for multi-site product development is to install a single
distributed configuration management system. We deliberately choose not to
do this. Each subsystem project has its own local CM system, and releases
versions of the subsystem by publishing ZIP files on the Intranet. Source
code is fully available, thus promoting an open source community.

7.8 Implementing Diversity

Building product families is all about making the right choices at the
right time. We distinguish the following decision moments: component
design, subsystem design, product design, factory, dealer, and customer.

Whatever a component designer can decide, he should build into his
component, but product specific information he should not include. Instead,
he should parameterise the component with such information. Similarly, a
subsystem designer can bind certain parameters of sub-components while
defining others in terms of subsystem parameters. The product designer
performs the ultimate binding of parameters to constants or to values stored
in a non-volatile memory. The factory initialises the NVM, but the dealer
and the customer also get an opportunity to change the values.

Koala supports late compile time binding. Late binding is binding that
occurs at product design time, at which time the compiler can still be run to
generate optimal code for that product configuration.

www.manaraa.com

COMPONENT ORIENTED PLATFORM A RCHITECTING

e'f'

". CXXX
'f' 'f'

evolves into ...

1::=======::::::>

Figure 16: Possible evolution of a component

7.9 Managing Evolution

135

0..00:::

As in COM, our interfaces are immutable, but new interfaces can be
defined. This rule is effected as soon as there are multiple users of the
interface, in other words, if a global change is no longer feasible.

Our components are not immutable. New versions of components may be
created, but must be upward compatible with older versions. This implies
that they must provide all of the old functionality or more, and require all of
the old functionality or less. So provides interfaces can be added or given a
'wider' type (subtypes may be connected to supertypes). Requires interfaces
cannot be removed but given a narrower type or made optional.

Subsystems evolve by the evolution of the public interfaces and
components of the subsystem. Interfaces and components can be deprecated
but only if they are not used in any product anymore.

7.10 Documentation

The documentation of our asset base differs from the traditional software
documentation (writing requirement specifications and design documents).
We describe interfaces formally with IDL (syntax only) and informally with
interface data sheets (syntax and semantics). These descriptions are
independent from any implementation; our interfaces are reusable units of
specification.

We describe components formally with CDL, and informally with
component data sheets. The data sheet is only concerned with the external
view; the internal view of a component is described in an implementation
notes document. The component data sheet plays the role of a specification
(written on beforehand) and a user manual (written afterwards).

www.manaraa.com

136 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

7.11 Architecture Verification

CDL actually serves as an architectural description language (ADL).
Having an ADL does not relieve us from architecture verification; it enables
it! We envisage an architect's workbench that interactively performs
consistency and evolution checks.

Consistency checks ensure that all configurations in the archive can be
built. Remember that developers test components only in limited contexts - it
is not realistic to test each change in all configurations that include the
component. However, we can analyse the architecture for consequences of
such changes. We can also detect patterns that are likely to be programming
errors, such as binding a control interface without binding the corresponding
notification interface.
Evolution checks test whether components are upward compatible with
previous versions, an early warning mechanism for detecting potential build
problems. Strong compatibility uses the rules as described above; weak
compatibility allows violations, provided no existing configuration is
bothered by the change.

8. DISCUSSION AND CONCLUSIONS

8.1 Applicability

In Section 1 we mentioned the existence of at least five different kinds of
PCP's in the electronics industry. In this chapter, we presented the software
renovation of two product families that are in their mature lifecycle phase.
Several techniques and mechanisms were presented that are particularly
suitable for products in this mature phase. Based on the different quality
profiles for the two families a number of different choices were made with
respect to for instance the component model part of the product family
engineering approach. We have not described product family engineering
approaches in other phases of Figure 1 in this chapter, but from our
experiences with other product families in the other phases we know that
also there significant variations in and on the main ingredients of the product
family engineering approach exist. We incline therefore to make the
tentative conclusion that the product family engineering approach presented
is, in its tum, a kind of method family itself. The variations are now
variations on the principles that were described in Section 2.

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 137

8.2 Product Family Engineering Principles

In Section 2 we presented a number of key principles: domain
orientation, integral quality, components, architecture, domain solution
capabilities, hardware abstraction, platforms, interfaces, and process
integration. In Table 3, we sketch the commonality and variability across the
two domains of these principles.

8.3 The Product Family Engineering Approach

In Section 3 we sketched a coarse framework for our product family
engineering approach. The full approach, however, covers the Business,
Organisation, Process and Architecture (BOPA) aspects of product family
engineering. In this chapter, we only addressed the architectural (A) and the
related development process (P) aspects. The Business (B) and organisation
(0) were not dealt with explicitly. In the technical discussion, we
concentrated on domain engineering and the architecting for product
families. In practice, it turned out that the business and organisational issues
are also very important.

Table 3: Comparison of principles across the two application domains

PRINCIPLE MEDICAL CONSUMER
Domain orientation Inherently different Inherently different

Integral quality Different quality profiles, Different quality profiles,
safety very important cost dominant

Dependent Industry standard Customised cost optimised
independence component model component model

Architecture centric Strong architecture focus Strong architecture focus

Uncoupling domain Encapsulated in units Encapsulated in subsystems
solution capabilities

Hardware abstraction Yes Yes

Targeted value at low Through shared platform Through component
cost and platform plug-ins configuration

Design for change Explicit interfaces Explicit interfaces

Co-operating in Based on AFE, CSE, and Based on AFE, CSE, and
separation ASE separation. Strong ASE separation. More

domain modelling implicit domain modelling

www.manaraa.com

138 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

8.4 Domain Engineering

The concepts and techniques mentioned in Section 4 were used in both
application domains. In the medical domain, however, much more explicit
domain models were used than in the consumer domain. Again we saw
interesting differences, for instance, the notion of variation points was
realised in totally different ways, see Section 8.5. The domain modelling
activity proved to be a good basis for the design of the family and the
identification of the diversity.

8.5 Architecting for Product Families

The concepts and techniques mentioned in Section 5 were again used in
both domains.

1. The medical family is not very resource constrained, so that a standard
component technology can be used (COM). In CE, Koala was needed to
meet these resource requirements.

2. The medical platform proved to be a really variance free generic
architecture with plug-ins to handle diversity. The CE platform provides
a set of building blocks from which different architectures can be
instantiated. The medical platform is more pre-integrated than the CE
platform, differing in releasing (parts of) the platform.

3. The medical platform aims at a product family. The CE platform aims at
a product population, The medical platform defines more structure
(skeleton) than the CE platform (family vs. population).

4. Different ways in supporting diversity were used (component
frameworks, plug-ons).

5. For the medical platform, central integration and testing is an important
requirement (FDA). For the CE platform, flexibility in creating multiple
product architectures is the primary requirement. The medical platform is
integrated and released at a single site and at a single point in time. The
CE platform is released per subsystem.

6. Component frameworks provided an important means to realise diversity
in the platform, and are suitable for multi-site development (component
framework by platform group, and the plug-ins by the product groups)

7. A number of architectural principles have been successfully applied to
support evolvability, viz. layering (inc!. hardware abstraction) and
dependent independence (separate units for subsystem domains).

8. Due to high safety and reliability requirements (FDA) shared testing of
integrated platforms is better in the medical situation than completely

www.manaraa.com

COMPONENT ORIENTED PLATFORM ARCHITECTING 139

independent releases of the individual units. Automated architecture
verification is in place to guard the conceptual integrity.

9. FURTHER RESEARCH

The notion of architectural verification is part of a bigger concern of
platform guarding. Research into more advance platform guarding
techniques is required. The notion of integral quality is very important. In
practice, it is only feasible to treat a small number of qualities explicitly.
More advanced approaches are needed. Two other technical topics that are
subject of further research are family and platform evolution, addressing
product derivation and traceability. The study of the organisational and
business dimensions of the product family approach is also subj ect of further
study. Last but not least, the notion of a method family for developing
product families is intriguing and deserves further study.

ACKNOWLEDGEMENT

We want to thank our colleagues: Ben Pronk, Robert Deckers, Jaap van
der Heijden, Auke Jilderda, Frank van der Linden, Jilrgen Milller, Gerrit
Muller, Henk te Sligte, Luc Koch and William van der Sterren for their
contributions, stimulating discussions, or comments on the chapter.

This work has been partly conducted in the context of the ITEA 99005
project ESAPS as part of the Eureka L! 2023 Programme.

10. REFERENCES

1. P. America. Requirements modeling for families of complex systems. Submitted to the
Third International Workshop on Software Architectures for Product Families, Las
Palmas de Gran Canaria, Spain, March 15-17,2000.

2. L. Bass, P. Clements, S. Cohen, L. Northrop, and 1. Withey. Product Line Practice
Workshop Report. CMU/SEI-97-TR-003.

3. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison­
Wesley, 1998.

4. G. Booch, I. Jacobson, and 1. Rumbaugh. The Unified Modeling Language User Guide.
Addison-Wesley 1998.

5. F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of Patterns.
Addison-Wesley, 1996.

6. P. Clements and L. Northrop. A Frameworkfor Software Product Line Practice. version
2.0, 1999, SEI.

7. P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press/Prentice Hall,1990.

www.manaraa.com

140 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

8. A.M. Davis. 201 principles of software development. Me Grawhill, 1994.
9. l-M. DeBaud and K. Schmid. A systematic approach to derive the scope of software

product lines. Proceedings ICSE 21, page 34-43, Los Angeles, 1999.
10. T. Dolan, R. Weterings, and le. Wortmann. Stakeholders in Software-System Family

Architectures. Proceedings of the Second International ESPRIT ARES Workshop, F.J.
van der Linden (Ed.), Springer LNCS 1429, pages 172-187, 1998.

11. B.P. Douglass. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns. Addison-Wesley, 1999.

12. F. 1 Erens. The synthesis of variety. PhD thesis Eindhoven University of Technology,
ISBN 90-386-0295-6, 1996.

13. e. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison-Wesley,
1999.

14. The draft Recommended Practice for Architectural Description, IEEE P14711D51 of
October 1999.

15. r. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software
Engineering: A Use Case Driven Approach. ACM Press/ Addison-Wesley, 1992.

16. r. Jacobson, G. Booch, and 1 Rumbaugh. The Unified Software Development Process.
Addison-Wesley, 1998.

17. r. Jacobson, M. Griss, and P. Jonsson. Software Reuse - Architecture, Process, and
Organization for Business Success. Addison-Wesley, 1998.

18. E. Jandourek. A Modelfor Platform Development. Hewlett-Packard Journal, August 1996.
19. H. Kaindl. Difficulties in the Transition from 00 Analysis to Design. IEEE Software,

pages 94-102, September/October 1999.
20. E.-A. Karlsson (Ed.). Software Reuse: A Holistic Approach. Wiley, 1995.
21. P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, pages 42-50,

November 1995.
22. W.C. Lim. Managing Software Reuse. Prentice Hall, 1997.
23. F.l van der Linden and lK. Muller, Creating Architectures with Building Blocks. IEEE

Software Vol. 12, No.6, pages51-60, November 1995.
24. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. SpecljjJing Distributed Software

Architectures. Proceedings ESEC'95, Wilhelm Schafer, Pere Botella (Eds.), Springer
LNCS 989, pp. 137-153, 1995.

25. M.H. Meyer and A. Lehnerd. The Power of Product Platforms: Building Value and Cost
Leadership. Free Press, ISBN 0-684-82580-5.

26. lK. Muller. Aspect Design with the Building Block Method. Proceedings of the First
Working IFIP Conference on Software Architecture, February 1999.

27. lH. Obbink. Product differentiation and Process Integration: the key to just-in-time in
product development, LNCS, 1995.

28. lH. Obbink. Analysis of Software Architectures in High- and Low-Volume Electronic
Systems and industrial experience report, LNCS, 1997.

29. lH. Obbink, P.e. Clements, and P.l van der Linden. Introduction of Proceedings of the
Second International ESPRIT ARES Workshop, FJ. van der Linden (Ed.), Springer
LNCS 1429, 1998.

30. R. van Ommering. Koala. A Component Model for Consumer Electronics Product
Software. Proceedings of the Second International ESPRIT ARES Workshop, FJ. van
der Linden (Ed.), Springer LNCS 1429, pages 76-86, 1998.

31. A. Postma, R.L. Krikhaar, and M. Stroucken. A Method for Software Architecture
Verification. Submitted to ICSE 2000, Limerick, June 2000.

www.manaraa.com

COMPONENT ORIENTED PLATFORM A RCHITECTING 141

32. B. Pronk. Medical Product Line Architectures - 12 years of experience. Proceedings of
the First Working IFIP Conference on Software Architecture, February 1999.

33. E. Rechtin and M.W. Maier. The Art of Systems Architecting. CRC Press, 1997, ISBN 0-
8493-7836-2.

34. J. Rozenblit and K. Buchenrieder. Codesign: Computer-aided software/Hardware
Engineering. IEEE Press, 1995, ISBN 0-7803-1049-7.

35. D. Soni, R. Nord, and C. Hofmeister. Software Architecture in Industrial Applications.
Proceedings of the International Conference on Software Engineering, pages 196-210,
Seattle, April 1995.

36. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison­
Wesley, 1998.

37. D.M. Weiss and C.T.R. Lai. Software Product-Line Engineering: A Family Based
Software Development Process. Addison-Wesley, 1999.

38. J.G. Wijnstra. Component Frameworks for a Medical Imaging Product Family.
Submitted to the Third International Workshop on Software Architectures for Product
Families, Las Palmas de Gran Canaria, Spain, March 15-17,2000.

www.manaraa.com

Chapter 5

SYNTHESIS-BASED SOFTWARE
ARCHITECTURE DESIGN

Bedir Tekinerdogan and Mehmet Ak~it
TRESE Group, Department of Computer Science, University ofTwente, postbox 217, 7500
AE, Enschede, The Netherlands. email: {bedir.aksit}@cs.utwente.nl.
www: http://trese.cs.utwente.nl

Keywords: Software architecture design, Synthesis, Domain analysis, Problem-Solving,
Synbad

Abstract: Software architectures provide the gross-level design and as such impact the
quality of the entire system. To support the quality factors such as robustness,
adaptability and maintainability, a proper scoping of the architecture
boundaries and likewise the identification of the relevant architectural
abstractions is necessary. Several architecture design approaches have been
introduced whereby the scoping of the architecture is merely based on the
stakeholder's perspective. This chapter introduces a novel software
architecture design approach that aims to scope the architecture boundaries
from a systematic problem-solving perspective instead. In this so-called
synthesis-based architecture design approach (Synbad), the client's perspective
is abstracted to derive the technical problems. The technical problems define
the scope of the solution domains from which the architectural abstractions are
derived. The approach is illustrated for the design of an atomic transaction
architecture for a real industrial project.

1. INTRODUCTION

Research on software architecture design approaches is still in its
progressing phase and several architecture design approaches have been
introduced in the last years [6][15][37][50]. However, a consensus on the
appropriate software architecture design process is not established yet and

www.manaraa.com

144 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

current software architecture design approaches have to cope with several
problems l .

First of all, planning the architecture design phase is intrinsically difficult
due to its conflicting goals of providing a gross level structure of the system
and at the same time directing the subsequent phases in the project. The first
goal requires planning the architecture in later phases of the software
development process when more information is available. In contrast, the
latter goal requires planning it as early as possible so that the project can be
more easily managed.

Second, most software architecture design approaches derive the
architectural abstractions merely from the client's-perspective2 rather than on
the architectural solution perspective of the system. The gap between the
client perspective and the architectural design perspective, however, is
generally too large and the client may lack to specify the right detail of the
problem. Due to the inappropriate scoping of the problem the fundamental
transparent abstractions may be missed andlor redundant abstractions may be
elicited.

Third, the adopted sources from the client's perspective are not very
useful in providing sufficiently rich semantics of the architectural
components and in providing guidelines for composing the architectural
abstractions. In this case, architectural components are often equivalent to
semantically poor groupings.

Finally, although solution domain analysis may be used and be effective
in deriving the architectural abstractions and provide the necessary
semantics, it may not suffice if it is not managed well. The problem is that
the domain model may lack the right detail of abstraction to be of practical
use for deriving architectural abstractions.

Current architecture design approaches have to cope with one or more of
the above problems. In this chapter, a novel approach termed synthesis­
based software architecture design, Synbad for short, is proposed, which
aims providing effective solutions to these problems. In this approach the
synthesis concept of traditional engineering disciplines is applied to the
software architecture design process. Hereby, the requirements are first
mapped to technical problems. For each problem the corresponding solution
domain is identified and architectural abstractions are derived from the
solution domain knowledge. Finally, the individual sub-solutions are
synthesized in the overall software architecture. The novelty of this approach

1 Chapter I of this book provides an in-depth analysis of the current architectural design
methods.

2 We use the term client to denote any stakeholder who has interest in the application of a
software architecture.

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 145

is that it explicitly integrates the processes of technical problem analysis,
solution domain analysis and alternative design space analysis.

The approach will be demonstrated using a project on the design of an
atomic transaction system architecture for a distributed car dealer
information system3 •

The remainder of the chapter is organized as follows. In section 2, the
synthesis concept is described and a model for software architecture
synthesis is derived. In section 3, an example project on the design of a
software architecture for atomic transactions for a distributed car dealer
information system will be described, which will be used throughout the
whole chapter. In section 4, Synbad will be presented that will be illustrated
for the example project. Finally, in section 5, we will present our discussion
and conclusions.

2. SYNTHESIS

Software architecture design can be considered as a problem solving
process in which the problem represents the requirement specification and
the solution represents the software architecture design [35]. A well-known
and widely applied problem solving technique in traditional engineering
disciplines such as electrical engineering, chemical engineering and
mechanical engineering is the concept of synthesis [37]. In section 2.1 we
will explain this concept of synthesis as it is described in traditional
engineering disciplines. In section 2.2 we will provide a software
architecture synthesis model that represents the integration of the synthesis
concept in software architecture design and as such forms a basis for
Synbad, the synthesis-based software architecture design approach.

2.1 Synthesis in Traditional Engineering

Synthesis in engineering often means a process in which a problem
specification is transformed to a solution by first decomposing the problem
into loosely coupled sub-problems that are independently solved and
integrated into an overall solution. In particular, the synthesis process
includes an explicit phase for searching solution domains, searching design
alternatives in the corresponding solution domain and selecting these
alternatives based on explicit quality criteria.

3 This work has been carried out as part of the INEDIS project that was a collaborative
project between Siemens-Nixdorf and the TRESE group, Software Engineering, Dept. of
Computer Science, University of Twente.

www.manaraa.com

146 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Synthesis consists generally of multiple steps or cycles. A synthesis cycle
corresponds to a transition (transformation) from one synthesis state to
another and can be formally defined as a tuple consisting of a problem
specification state and a design state [38]. The problem specification state
defines the set of problems that still needs to be solved. The design state
represents the tentative design solution that has been lastly synthesized.
Initially, the design state is empty and the problem specification state
includes the initial requirements. After each synthesis state transformation, a
sub-problem is solved. In addition a new sub-problem may be added to the
problem specification state.

Each transformation process involves an evaluation step whereby the
design solutions so far (design state) are evaluated with respect to its
consistency with the initial requirements and any additional requirements
identified during the synthesis.

A synthesis-based design process is defined as a finite sequence of
synthesis states, resulting in a terminal state. A synthesis state is terminal in
either of two cases: the specification part is satisfiable by the design part
(there is a solution) or neither the design nor the specification can be
modified. The first is a successful design the latter is an unsuccessful one.

The sub-solutions and overall solution has to meet a set of objective
metrics, while satisfYing a set of constraints. Constraints may be imposed
within and among the sub-solutions. For a suitable synthesis it is required
that the problem is understood well. This means that the problem is well­
described and the quality criteria and constraints are known on beforehand.
In practice, however, this is very difficult to meet and a complete analysis is
impossible in any but the simplest problems [17]. Therefore, in practice,
synthesis can usually start before the problem is totally understood.

During the synthesis process a designer needs to consider the design
space that contains the knowledge that is used to develop the design solution.
F or this, synthesis requires the ability to produce a set of alternative
solutions and select an optimal or near optimal solution. The space of
possible solutions, however, may be very large and it is not feasible to
examine all possible solutions [17].

In [38] it has been shown that the design synthesis is inherently an NP­
complete problem. To manage this inherent complexity, synthesis can be
performed at different, higher abstraction levels in the design process. In the
design of digital signal processing systems, for example, the following
synthesis approaches with increasing abstraction levels are distinguished:
circuit synthesis, logic synthesis, register-transfer synthesis, and system
synthesis [23]. For large problems, the lower-level design synthesis
approaches become intractable and time consuming due to the large number
of entities and their relations that need to be considered. In the example of

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 147

digital signal processing adopting the transistor as the basic abstraction, is
unsuitable for current industrial problems that integrate millions of
components. A higher level of abstraction reduces the number of entities that
a designer has to consider which in turn reduces the complexity of the design
of larger systems. In addition, higher level abstractions are closer to a
designer's way of thinking and as such increases the understandability, which
on its turn facilitates to consider various alternatives more easily. The
counterpart is that higher level abstractions consist of the fixed configuration
of lower level abstractions thereby implicitly reducing the alternative
configuration possibilities. This is acceptable, though, since usually the total
space of a synthesis from higher level abstractions is large enough to be of
practical use.

2.2 Software Architecture Synthesis Model

Figure 1 represents a conceptual model for software architecture
synthesis [35]. This model has been derived from our experiences in
designing software architectures for various applications [3][5][63]67]. In
addition it conforms to the synthesis-based design as it is widely accepted in
mature engineering disciplines. Basically, it aims to explicitly integrate the
processes of technical problem analysis, solution domain analysis, and
alternative space analysis.

SOLUllON DEFINITION

r---------.~-+-Provide-----______

SOLUTION CONTROL

Impact

Discover

Compose

Figure 1: Architecture synthesis model

www.manaraa.com

148 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

The model consists of two parts: Solution Definition and Solution
Control. Each part consists of concepts and functions among concepts. The
concepts are represented by rounded rectangles, the functions are
represented by arrows. The part Solution Definition represents the
identification and definition of solution abstractions. The part Solution
Control represents the quantification, measurement, optimization and
refinement of the selected solution abstractions. Note that this model
represents a conceptual view of the software architecture synthesis process
and does not enforce specific control flows between the various processes. In
the following we will explain the concepts and functions of both parts of the
model.

2.2.1 Solution Definition

The concept Requirement Specification represents the requirements of the
stakeholders who are interested in the development of a software
architecture.

The concept Technical Problem represents the problem specification that
is actually to be solved. The model thus explicitly separates the concepts
Requirement Specification and Technical Problem.

The function Formulate utilizes the Requirment Specification to define
the process for searching and representing the problems that need to be
solved for the architecture development.

The concept Sub-Problem represents a sub-problem of the identified
problem.

The function Select represents the process for selecting the corresponding
sub-problem from the problem.

The concept Solution Domain Knowledge represents the solution domain
knowledge that is needed for solving the sub-problem.

The function Search represents the process for searching the solution
domain knowledge for a given problem.

The concept Solution Abstraction represents the extracted solution from
the solution domain knowledge.

The function Extract represents the process for extracting the solution
abstractions from the solution domain knowledge.

The concept Solution Structure Specification represents the specification
of the extracted solution abstraction.

The function Discover represents the process of discovering new sub­
problems when new solution abstractions are extracted from the solution
domain knowledge.

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 149

The function Specify represents the process for specifying the solution
abstraction.

The concept Architecture Description represents the architecture
description so far.

The function Compose represents the refinement of the overall­
architecture description with the concept Solution Structure Specification.

The function Impact represents the process of refining the requirement
specification from the results of the architecture specification.

2.2.2 Solution Control

The part Solution Control has conceptual relations with the part Solution
Definition through the functions Provide, Express and Refine.

The function Provide represents the process for providing the quality
criteria and constraints that are imposed on the solution. The concept Quality
Criteria/Constraints represents these criteria and constraints of the (sub-)
problem. These are derived from the technical problems and/or the solution
domain knowledge.

The function Express represents a formalization of the solution
abstraction for evaluation purposes. Typical formalizations may be the
quantification into mathematical models.

The function Apply represents the process for measurement of the
expressed solution abstraction using the provided quality criteria/constraints.

The concept Heuristic Rules/Optimization Techniques represents the
optimization of the formalizations of the solution abstractions using the
quality criteria and the constraints. It can be based on mathematical
optimization techniques or heuristic rules.

The function Refine represents the process of refining the solution
abstraction according to the results of the optimization techniques.

3. EXAMPLE PROJECT:
TRANSACTION SOFTWARE ARCHITECTURE
DESIGN

The Integrated New European Dealer Information System project
(INEDIS) has been carried out as a collaborative project between the TRESE
group of the University of Twente and Siemens-Nixdorf, The Netherlands.
The project dealt with the development of a distributed car dealer
information system in which different car dealers are connected through a
network. A basic requirement was the automated support for processes such

www.manaraa.com

150 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

as workshop processing, order processing, stock management, new and used
car management, and financial accounting. Further, the car dealer system
required the execution of the tasks consistently and effectively. The meaning
of consistency, in general, depends on any a priori constraints, which must
be guaranteed that they will never be violated. For example, two clients may
not reserve the same car at the same time.

In a distributed system as the car dealer system, there are two main
factors that threaten the consistency of data: concurrency and failures. In
case of concurrency the executions of programs that access the same objects
can interfere. When a failure occurs, one or more application programs may
be interrupted in midstream. Since a program is written under the
assumption that its effects are only correct if it would be executed in its
entirety, an interrupted program may lead to inconsistencies as well. To
achieve data consistency, distributed systems should include provision for
both concurrency and recovery from failures. In addition it is generally
demanded that the implementation of these concurrency and recovery
mechanisms is transparent to the application program developers, since they
will need only the primitives and do not want to be bothered with
implementation details. Atomic transactions, or simply transactions, are a
well-known and fundamental abstraction which provide the necessary
concurrency control and recovery mechanisms for the application programs
in a transparent way. Transactions relieve application programmers of the
burden of considering the effects of concurrent access to objects or various
kinds of failures during execution. Atomic transactions have proven to be
useful for preserving the consistency in many applications like airline
reservation systems, banking systems, office automation systems, database
systems and operating systems.

The car dealer information system also required the use of atomic
transactions, and was to be used in different countries and by different
dealers each requiring dedicated transaction protocols. Therefore, a basic
requirement of the system was to identifY common patterns of transaction
systems and likewise provide a stable architecture of atomic transactions that
could be customized to the corresponding needs.

In addition to the need for adaptability at initialization time, the system
required also adaptation at run-time. The car dealer system is constituted of a
large number of applications with various characteristics, operates in
heterogeneous environments, and may incorporate different data formats. To
achieve optimal behavior, this requires transactions with dynamic adaptation
of transaction behavior, optimized with respect to the application and
environmental conditions and data formats. The adaptation policy, therefore,
must be determined by the programmers, the operating system or the data

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 151

objects. Further, reusability of the software is considered as an important
requirement to reduce development and maintenance costs.

4. SYNBAD: SYNTHESIS-BASED SOFTWARE
ARCHITECTURE DESIGN PROCESS

In this section, the synthesis-based software architecture design process
that implements the process of the Architecture Synthesis Model of Figure 1
will be described.

The following sections are organized around the basic processes of the
approach. Section 4.1 describes the Requirements Analysis process, section
4.2 the Problem Analysis process, section 4.3 the Solution Domain Analysis
process, section 4.4 Alternative Space Analysis process and finally section
4.5 the Architecture Specification process.

4.1 Requirements Analysis

The architecture design is initiated with the requirements analysis phase
in which the basic goal is to understand the stakeholder requirements.
Stakeholders may be managers, software developers, maintainers, end-users,
customers etc. [28]. The requirements analysis process concerns the concept
Requirement Specification of Figure 1.

In Synbad the well-known requirement analysis techniques such as
informal requirement specifications, use-cases [21] and scenarios [32],
constructing prototypes and defining finite state machine modeling are
applied. Informal requirement specification serves as a first basis for the
requirements analysis process and is generally defined by interacting with
the clients. Use cases provide a more precise and broader perspective of the
requirements by specifying the external behavior of the system from
different user perspectives. Scenarios are instances of use cases and define
the dynamic view and the possible evolution of the system. Prototypes are
used to define the possible user interfaces and may further help to clarify the
desired behavior of the system. Finally, for safety-critical systems rigorous
approaches such as state transition diagrams or formal specification
languages. may be used.

These techniques have been applied in different approaches and have
shown to be useful in supporting the analysis and understanding of the client
requirements. We will not elaborate on these in this chapter and refer for
detailed information to the corresponding publications [59][51][35].

www.manaraa.com

152 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

4.2 Technical Problem Analysis

The requirements analysis process provides an understanding of the
client perspective of the software system. In the technical problem analysis
process the identified client requirements are mapped to technical problems.
The underlying motivation for this technical problem analysis process is the
idea that software architecture is in essence a problem solving process in
which the solution represents an architecture design. In this sense, the
technical problem analysis process is necessary to identify the essence of the
problem, separate from the client's view on the problem. In the ideal case the
client's view may represent directly the problem of concern, though, in
practice this is far from truth and additional steps are required to capture the
real problems.

The technical problem analysis process is related to the concepts
Technical Problem and Sub-Problem and the functions Select, Search and
Discover in the model of Figure 1. It consists of the following steps:

1. Generalizing the requirements: whereby the requirements are abstracted
and generalized.

2. Identification of the sub-problems: whereby technical problems are
identified from the generalized requirements.

3. Specification of the sub-problems: whereby the overall technical
problem is decomposed into sub-problems.

4. Prioritization of the sub-problems: whereby the identified technical
problems are prioritized before they are processed.

In the following we explain these processes in more detail.

4.2.1 Generalizing the requirements

Discovering the problems from a requirement specification is not a
straightforward task. The reason for this is that the clients may not be able to
accurately describe the initial state and the desired goals of the system. The
client requirements may be specific and provide only specific interpretations
of a more general problem. Therefore, to provide the broader view and
identify the right problems we abstract and generalize from the requirement
specification and try to solve the problem at that level4• Often, this
abstraction and generalization process allows to define the client's wishes in

4 In mathematics, solving a concrete problem by first solving a more general problem is
termed as the Inventor's Paradox [44] [34]. The paradox refers to the fact that a general
problem has paradoxically a simpler solution than the concrete problem.

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 153

entirely different terms and therefore may suggest and help to discover
problems that were not thought of in the initial requirements.

4.2.2 Identification of the sub-problems

Once the requirement specification has been put into a more general and
broader form, we derive the technical problem that consists usually of
several sub-problems. At this phase, architecture design is considered as a
problem solving process. Problem solving is defined as the operation of a
process by which the transformation from the initial state to the goal is
achieved [40]. We need thus first to discover and describe the problem.
Therefore, in the generalized requirement specification we look for the
important aspects that needs to be considered in the software architecture
design [58]. These aspects are identified by considering the terms in the
generalized requirements specification, the general knowledge of the
software architect and the interaction with the clients. This process is
supported by the results of the requirements analysis phase and utilizes the
provided use-case models, scenarios, prototypes and formal requirements
models.

4.2.3 Specification of the sub-problems

The identification of a sub-problem goes in parallel with its specification.
The major distinction between the identification and the specification of a
problem is that the first activity focuses on the process for finding the
relevant problems, whereas the second activity is concerned with its accurate
formalization. A problem is defined as the distance between the initial state
and the goal. Thereby, the specification of the technical problems consists of
describing its name, its initial state and its goal.

4.2.4 Prioritization of the sub-problems

After the decomposition of the problem into several sub-problems the
process for solving each of the sub-problems can be started. The selection
and ordering in which the sub-problems are solved, though, may have an
impact on the final solution. Therefore, it is necessary to prioritize and order
the sub-problems and handle the sub-problems according to the priority
degrees. The prioritization of the sub-problems may be defined by the client
or the solution domain itself. The latter may be the case if a sub-problem can
only be solved after a solution for another sub-problem has been defined.

www.manaraa.com

154 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

EXAMPLE

We generalized the INEDIS requirement specification [1] and mapped
these to the technical problems. For example, we generalized the
requirements for the various scheduling techniques. In the original
requirement specification and the interview with the stakeholders we
identified that only two concurrency control approaches were used, namely
optimistic and aggressive locking. Attempts were made to adapt between
these two concurrency control mechanisms. After our discussion with the
stakeholders [55] it followed that the system needed also other types of
concurrency control protocols and the run-time adaptation had to be defined
for these as well. In parallel with our generalization of the requirements we
were able to define the different sub-problems, which are listed in the
following:

Pl. Provide transparent concurrency control.
Goal: Determine the set of concurrency control techniques that are

required and provide this in a reusable form.
P2. Provide transparent recovery techniques.

Goal: Determine the set of recovery techniques that can be used for
various kinds of data types and provide this in a reusable form.

P3. Provide transparent transaction management techniques.
Goal: Provide various transaction management techniques that can

be applied for advanced transactions such as long transactions
and nested transactions. Provide the various start, commit and
abort protocols in a reusable format.

P4. Provide adaptable transaction protocols based on transaction, system
and data criteria.
Goal: Provide the means to adapt the transaction protocols both on
compile-time and run-time. Adaptation mechanism should be
determined by programmers, operating system or the data object
characteristics.

4.3 Solution Domain Analysis.

The Solution Domain Analysis process aims to provide a solution domain
model that will be utilized to extract the architecture design solution. It
relates basically to the concepts Solution Domain Knowledge and Solution
Abstraction and the functions Search and Extract in the model of Figure 1.
The solution domain analysis process consists of the following activities:

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 155

1. Identification and prioritization of the solution domains for each sub-
problem.

2. Identification and prioritization of the knowledge sources for each
solution domain.

3. Extracting solution domain concepts from solution domain knowledge.
4. Structuring the solution domain concepts.
5. Refining the solution domain concepts.

In the following we will explain these steps in more detail.

4.3.1 Identification and prioritization of the solution domains

For the overall problem and each sub-problem we search for the solution
domains that provide the solution abstractions to solve the technical
problem. The solution domains for the overall problem are more general
than the solution domains for the sub-problems. Further, each sub-problem
may be recursively structured into sub-problems requiring more concrete
solution domains on their turn.

An obstacle in the search for solution domains may be the possibly large
space of solution domains leading to a time-consuming search process. To
support this process, we look for categorizations of the solution domain
knowledge into smaller sub-domains. There are different categorization
possibilities [24]. In library science, for example, the categories are
represented by facets that are groupings of related terms that have been
derived from a sample of selected titles [48]. In [2], the solution domain
knowledge is categorized into application, mathematical and computer
science domain knowledge. The application domain knowledge refers to the
solution domain knowledge that defines the nature of the application, such as
reservation applications, banking applications, control systems etc.
Mathematical solution domain knowledge refers to mathematical knowledge
such as logic, quantification and calculation techniques, optimization
techniques, etc. Computer science domain refers to knowledge on the
computer science solution abstractions, such as programming languages,
operating systems, databases, analysis and design methods etc. This type of
knowledge has been recently compiled in the so-called Software Engineering
Body of Knowledge (SWEBOK) [14]. Notice that our approach does not
favor a particular categorization of the solution domain knowledge and
likewise other classifications besides of the above two approaches may be
equally used.

If the solution domains have been adequately organized one may still
encounter several problems and the solution domain analysis may not always
warrant a feasible solution domain model. This is especially the case if the

www.manaraa.com

156 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

solution domains are not existing or the concepts in the solution domain are
not fully explored yet and/or compiled in a reusable format.

If the solution domain knowledge is not existing, one can either terminate
the feasibility analysis process or initiate a scientific research to explore and
formalize the concepts of the required solution domain. The first case leads
to the conclusion that the problem is actually not (completely) solvable due
to lack of knowledge. The latter case is the more long-term and difficult
option and falls outside the project scope.

If a suitable solution domain is existing and sufficiently specified, it can
be (re)used to extract the necessary knowledge and apply this for the
architecture development. It may also happen that the solution domain
concepts are well-known but not formalized [30]. In that case it is necessary
to specify the solution domain.

4.3.2 Identification and prioritization of knowledge sources

Each identified solution domain may cover a wide range of solution
domain knowledge sources that represent the content of the related
knowledge. These knowledge sources may not all be suitable and vary in
quality. For distinguishing and validating the solution domain knowledge
sources we basically consider the quality factors of objectivity and relevance.
The objectivity quality factor refers to the solution domain knowledge
sources itself, and defines the general acceptance of the knowledge source.
Solution domain knowledge that is based on a consensus on a community of
experts has a higher objectivity degree than solution domain knowledge that
is just under development. The relevance qualoty factor refers to the
relevance of the solution domain knowledge for solving the identified
technical problem.

The relevance of the solution domain knowledge is different from the
objectivity quality. A solution domain knowledge entity may have a high
degree of objective quality because it is very precisely defined and supported
by a community of experts, though, it may not be relevant for solving the
identified problem because it addresses different concerns. To be suitable for
solving a problem it is required that the solution domain knowledge is both
objective and relevant. Therefore, the identified solution domain knowledge
is prioritized according to their objectivity and relevancy factors. This can be
expressed in the empirical formula [2]:

priority(s) =f (objectivity(s), (relevance(s))

Hereby priorityO, fO, objectivityO and relevanceO represent functions
that define the corresponding quality factors of the argument s, that stands
for solution domain knowledge source. For solving the problem, first the

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 157

solution domain knowledge with the higher priorities is utilized. The
measure of the objectivity degree can be determined from general
knowledge and experiences. The measure for the relevance factor can be
determined by considering whether the identified solution domain source
matches the goal of the problem. Note, however, that this formula should not
be interpreted too strictly and rather be considered as an intuitive and
practical aid for prioritizing the identified solution domain knowledge
sources rather.

EXAMPLE

Let us now consider the identification and the pnontization of the
solution domains for the given project example. For the overall problem, a
solution is provided by the solution domain Atomic Transactions. Table I
provides the solution domains for every sub-problem.

Table 1: The solution domains for the sub-problems

Suij~:e~Q~C~M
PI

P3

SOLiJ'fIONUOMAxN
Transaction Management

. Recovery

4dapfgbi?!ty'

The prioritization of these solution domains was defined in the above
order from PI to P4.

For the overall problem and the corresponding solution domain of Atomic
Transactions, we could find sufficient knowledge sources. Our identified
solution domain knowledge sources consisted of managers, system
developers, maintainers, literature on transactions, and documentation on the
existing car dealer system. However, among these different knowledge
sources we assigned higher priority values to the literature on atomic
transaction systems. Table 2 provides the selected set of knowledge sources
for the overall solution domain.

www.manaraa.com

158 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Table 2: A selected set of the identified knowledge sources for the overall solution domain

KSI

KS3

KS5

KS7

Concurrency Control & Recovery in Database Systems [11]

An Introduction to Database Systems [13]

The design and implementation 0/ a distributed transaction
system based on atomic data types [68]

Principles o/Transaction Processing [10]

textbook

textbook

j oumal paper

textbook

The table consists of three columns that are labeled as ID, Knowledge
Source and Form that respectively represent the unique identifications of the
knowledge sources, the title of the knowledge source and the representation
format of the knowledge source. The table includes the knowledge sources
that describe atomic transactions in a general way. Knowledge sources that
deal with specific aspects of transaction systems, for example such as
deadlock detection mechanisms, have been temporarily omitted and are
identified when the corresponding sub-problems are considered.

In the same manner we looked for knowledge sources for the individual
sub-problems and we were able to identifY many knowledge sources for the
solution domains Transaction Management, Concurrency Control and
Recovery. The solution domain Adaptability was more difficult to grasp than
the other ones. For this, we did a thorough analysis on the notion of
adaptability and studied various possibly related publications such as control
theory [47][22][62]. In addition we organized a workshop on Adaptability in
Object-Oriented Software Development [57][4].

As an example, Table 3 shows a selected set of the identified knowledge
sources for the solution domain Concurrency Control.

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN

Table 3: A set of knowledge sources for the solution domain Concurrency Control

KSI
Concurrency Control in Advanced Database Applications [7]

KS2 td~curr~ncy¢onMol in'j;ji~trilnjt¢dDdtaoqse:Syst~m~ [16]

KS3

KS4
KS5

The theory o/Database Concurrency Control [41].

¢dncurrency cQHMdl &ji'~qdvery inDai£b£SeSYSff?n1S}[tlJ

Concurrency Control and Reliability in Distributed Systems [12]

Conctlrhency.Cotl(rolinj)istribtl4edDat£b~.se Systems [9]

journal
paper

textbook

textbook
journal
paper

te~tbook

159

Note that the knowledge source KS4 has also been utilized for the overall
solution domain. The reason for this is that this knowledge source is both
sufficiently abstract to be suitable for the overall solution domain and also
provides detailed information on the solution domain Concurrency Control.

4.3.3 Extracting Solution Domain Concepts from Solution Domain
Knowledge

Once the solution domains have been identified and prioritized, the
knowledge acquisition from the solution domain sources can be initiated.
The solution domain knowledge may include a lot of knowledge that is
covered by books, research papers, case studies, reference manuals, existing
prototypes/systems etc. Due to the large size of the solution domain
knowledge, the knowledge acquisition process can be a labor-intensive
activity and as such a systematic approach for knowledge acquisition is
required [43], [25], [66].

In our approach we basically distinguish between the knowledge
elicitation and concept formation process. Knowledge elicitation focuses on
extracting the knowledge and verifying the correctness and consistency of
the extracted data. Hereby, the irrelevant data is disregarded and the relevant
data is provided as input for the concept formation process. Knowledge
elicitation techniques have been described in several publications and its role
in the knowledge acquisition process is reasonably well-understood [66],
[39], [19], [21].

The concept formation process utilizes and abstracts from the collected
knowledge to form concepts5• In the literature, several concept formation

5 There are basically three views of concepts, including the classical view, the prototype
view and the exemplar view. Concept forming through abstraction from instances is
basically applied in the classical view and the prototype view [23].

www.manaraa.com

160 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

techniques have been identified6 [26][46][23]. One of the basic abstraction
techniques in forming concepts is by identifying the variations and
commonalities of extracted information from the knowledge sources
[52][20]. Usually a concept is defined as a representation that describes the
common properties of a set of instances and is identified through its name.

EXAMPLE

We analyzed and studied the identified solution domain knowledge
according to the assigned priorities and extracted the fundamental concepts.
After considering the commonalities and variabilities of the extracted
information from the solution domains we could extract the following
solution domain concepts [35]: Atomic Transaction System, Transaction,
TransactionManager, PolicyManager, Scheduler, RecoveryManager,
DataManager, Data Object.

4.3.4 Structuring the Solution Domain Concepts

The identified solution domain concepts are structured usmg
generalization-specialization relations and part-whole relations,
respectively. In addition, also other structural association relations are used.
Like the concepts themselves, the structural relations between the concepts
are also derived from the solution domains.

For the structuring and representation of concepts, so-called concept
graphs are used. A concept graph is a graph which nodes represent concepts
and the edges between the nodes represent conceptual relations. The
notation of concept graphs is given in Figure 2.

The notation for a concept is a stereotype of the class notation in the
Unified Modeling Language [13]. A stereotype represents a subclass of a
modeling element with the same form but with a different intent. The
stereotype for a concept is identified by the keyword <concept>7.

6 This process of concept abstraction is usually considered as a psychological activity that is
often associated with the term 'experience' [52]. Experts, i.e. persons with lots of
experience, own a larger set of concepts and are better in forming concepts than persons
who lack this experience.

7 Note that a class does not need to be similar to a concept. Although both classes and
concepts are generally formed through an abstraction process this does not imply that
every abstraction is a concept. A concept is a well-defined and stable abstraction in a given
domain. Although the notation that we use for representing concepts is similar to the
notation of classes, one should be aware that concepts are at a different abstraction level
than classes and should be treated as such.

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 161

<concept>
ConceptName

attribute10
----:>?> Association

attrlbute20 <0 :> Aggregation
'"

operation 1 0 ___ ---'I> Specialization

operation20

Figure 2: Notation for concept graphs

EXAMPLE

Figure 3 shows the structuring of the solution domain concepts in the top­
level concept graph of transaction systems. The concept Transaction
Manager has an association relation manages with the concept Transaction.
This means that Transaction Manager is responsible for the atomic
execution of Transaction. The association relation manages between concept
DataManager and Data Object represents the maintenance of the
consistency of data objects. Hereby, DataManager utilizes and coordinates
the concepts Scheduler and RecoveryManager by means of the association
relation coordinates. The concept PolicyManager coordinates the activities
of the concepts TransactionManager and DataManager and defines the
policy for adapting to different transaction protocols. Finally, the association
rdation accesses between Transaction and Data Object defines a
read/update relation between these two. A more detailed descrption of these
concepts is given in [35].

<concept>
Scheduler

<concept>
RecoveryManager

Figure 3: The top-level concept graph of an atomic transaction system

www.manaraa.com

162 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

4.3.5 Refinement of Solution Domain Concepts

After identifying the top-level conceptual architecture we focus on each
sub-problem and essentially follow the same synthesis process. The
refinement becomes necessary if the architectural concepts have a complex
structure themselves and this structure is of importance for the eventual
system.

The ordering of the refinement process is determined by the ordering of
the problems with respect to their previously determined priorities.
Architectural concepts that represent problems with higher priorities are
handled first. Due to space limitations we will not elaborate on the
refinement of these concepts in this chapter but suffice to refer to [35] in
which this is described in detail.

4.4 Alternative Design Space Analysis

We define the alternative space as the set of possible design solutions
that can be derived from a given conceptual software architecture. The
Alternative Design Space Analysis aims to depict this space and consists of
the sub-processes Defining the Alternatives for each Concept and Describing
the Constraints. Let us now explain these sub-processes in more detail.

4.4.1 Defining the Alternatives for each Concept

In Synbad, the various architecture design alternatives are largely dealt
with by deriving architectural abstractions from well-established concepts in
the solution domain. Each architectural concept is an abstraction from a set
of instantiations and during the analysis and design phases the architecture is
realized by selecting particular instances of the architectural concepts. An
instance of a concept is considered as an alternative of that concept. The
total set of alternatives per concept may be too large and/or not relevant for
solving the identified problems. Therefore, to define the boundaries of the
architecture it is necessary to identify the relevant alternatives and omit the
irrelevant ones.

The alternatives of a given concept may be explicitly identified and
published. In that case, selecting alternatives for a concept is rather
straightforward and depends only on the solution domain analysis process. If
the concepts have complex structures consisting of sub-concepts then an
alternative is defined as a composition of instances of separate sub-concepts.
The set of alternatives may then be too large to provide a name for each of
them individually. Nevertheless, we need to depict the total set of
alternatives so that each of them can be derived jf necessary. For this, first

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 163

the alternatives of each sub-concept are identified, and consequently the
various compositions of these alternatives are considered.

EXAMPLE

Let us now consider the alternatives for the concepts in the top-level
architecture. We depict the alternative space by providing a table in which
the column headers represent the sub-concepts and each table entry
represents an instance of the sub-concept in the column header. For example,
Table 4 represents the alternative space for the concept Scheduler. The table
has 4 columns, the first one represents the numbering of alternatives and the
second to the fourth columns represents the sub-concepts of the concept
SchedulerS.

Table 4: Alternatives of the sub-concepts of Scheduler

A. SYNCHRONIZATION

SCHEME

c.

Detector
Infinite Restart Detector
Cyclic Restart Detector

An alternative of the concept Scheduler is a composition of selections of
the alternatives of the sub-concepts. For instance, an alternative that may be
derived from Table 4 is the tuple (Two Phase Locking, Conservative,
Deadlock Detector) which represents a scheduler that uses aggressive two
phase locking protocol whereby a conservative deadlock detection
mechanism is used. Note that the concept Scheduler has 4x2x4=16
theoretically possible alternatives.

Another example is given in Table 5, which represents the alternative
space for the concept RecoveryManager.

8 These have been derived in the refinement process in which the synthesis process has been
applied to define the sub-architecture of the concept Scheduler [35].

www.manaraa.com

164 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Table 5: Alternatives of the sub-concepts of Recovery Manager

No-undo/ No-redo

An alternative of the concept RecoveryManager is the tuple (Operation
Logging, Strict, Undo-Redo, Commit-consistent), representing a
RecoveryManager that applies Operation Logging, Strict executions, adopts
Undo-Redo algorithm in case of restarts and a Commit-Consistent
checkpointing mechanism for optimizing the restart procedure. The total
number of theoretically possible alternatives of RecoveryManager is
4x3x4x3=144. If alternatives of Scheduler and RecoveryManager are
composed then the number of the set of possible alternative compositions
equals 16x144=2304 alternatives. Obviously, not all the alternative
compositions are possible or required and it is worthwhile to eliminate these
alternatives. This process is described in the following section.

4.4.2 Describing Constraints between Alternatives

An architecture consists of a set of concepts that together define a certain
structure. An instantiation of an architecture is a composition of
instantiations of concepts [2][35]. The instantiations of these various
concepts may be combined in many different ways and likewise this may
lead to a combinatorial explosion of possible solutions. Hereby, it is
generally impossible to find an optimal solution under arbitrary constraints
for an arbitrary set of concepts.

To manage the architecture design process and define the boundaries of
the architecture it is important to adequately leverage the alternative space.
Leveraging the alternative space means the reduction of the total alternative
space to the relevant alternative space. A reduction in the space is defined
by the solution domain itself that defines the constraints and as such the
possible combination of alternatives. The possible alternative space can be
further reduced by considering only the combinations of the instantiations
that are relevant from the client's perspective and the problem perspective.

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 165

Constraints may be defined for the sub-concepts within a concept as well
as among higher-level concepts. We first describe the constraints among the
sub-concepts within a concept and later among the peer-concepts. We use
the Object Constraint Language (OCL) [64] that is part of the UML to
express the constraints over the various concepts.

Constraint identification is not only useful for reducing the alternative
space but it may also help in defining the right architectural decomposition.
The existence of many constraints between the architectural components
provides a strong coupling and as such it may possibly indicate a wrong
decomposition. This may result in a reconsideration of the identified
architectural structure of each concept.

4.5 Architecture Specification

The Architecture Specification process consists of the two sub-processes
Extracting Semantics of the Architecture and Defining Dynamic Behavior of
the Architecture.

4.5.1 Extracting Semantics of the Architecture

To provide a more formal specification the semantics of each individual
concept is extracted from the solution domain. As a format for writing a
formal specification we use:

<operation><pre-condition><post-condition>

Hereby, <operation> represents the name of the operation of a concept.
The part <pre-condition> describes the conditions and assumptions made
about the values of the concept variables at the beginning of <operation>.
The part <post-condition> describe what should be true about the values of
the variables upon termination of <operation>. Note that this is just one
particular way of specifying architectures. For the specification of
transaction architectures this type of specification was appropriate, however,
other applications may require different specification mechanisms.

4.5.2 Define Dynamic Behavior of the Architecture

The specifications of the architectural components are used to model the
dynamic behavior of the architecture. For this purpose the so-called
collaboration diagrams are utilized [13]. Collaboration diagrams show the
structural organization of the components and the interaction among these
components. The collaboration diagrams are derived from the pre-defined
specifications of the architectural concepts.

www.manaraa.com

166 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

EXAMPLE

The collaboration diagram for the transaction architecture IS gIven m
Figure 4.

t:TransactianA~~licatian

1 :start(t)
2'handleOperatian(t a)
3:commit(t)

~: tm:TransactianManager I 4:abart(t)

1.1:start(t)
2.1 :handleOperatian(t, a)
3.1 :commit(t)
4.1:abart(t)

I ~m:Palic~Manager 1.2a:readParameterValuesO
1.2b:chaaseTransactianPratacals(t)

2.2:handleOperatian(t, a)
3.2 cammit(t)
4.2:abart(t)

I I 2.4:dispatch(a)
dm:DataManager I a:DataObject

2.3a:handleOperatian(t'Y ~ 2.3b:handleOperatian(t, a)
3.3a cam mit 3.3a cammit(t)
4.3a:abart(t) 4.3b:abart(t)

sched:Scheduler rm:Recovet:YManager

Figure 4: Collaboration diagram for the atomic transaction architecture

5. DISCUSSION AND CONCLUSIONS

In this chapter we have presented Synbad, the synthesis-based software
architecture design approacW This approach is based on the concept
synthesis of mature engineering disciplines whereby the initial problem is
decomposed into sub-problems that are solved separately and later integrated
in the overall solution. The novelty of Synbad with respect to the existing
architecture design approaches is that it makes the processes of problem
analysis, solution domain analysis and alternative space analysis explicit.
During the problem analysis, the client requirements are mapped to the
technical problems providing a more objective and reliable description of the
problem. During the solution domain analysis, stable architectural

9 The web site of this approach is at: http://trese.cs.utwente.nIlarchitecture_design/

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 167

components with rich semantics are derived from the solution domain
knowledge that includes well-defined and stable concepts. The solution
domain analysis itself is leveraged by the pre-identified technical problems
so that the right detail of the solution domain model is guaranteed. The
alternative space analysis explicitly depicts the possible set of design
alternatives that can be derived from the architectural components.

We have illustrated the approach by applying it for the design of an
atomic transaction architecture for a distributed car dealer system in an
industrial project. Apart from this, experimental studies have been carried
out with earlier versions of this approach in pilot studies that were carried
out by MSc students. For example, in [63], a software architecture for image
algebra was derived for the laboratory for clinical and experimental image
processing. The basic solution domain for this architecture was image
algebra and several related publications could be identified from which
sufficient stable abstractions were derived for the design of the software
architecture. The atomic transaction and the image algebra domain appeared
to be examples of well-defined and sufficiently formalized domains. The
experimental studies have been, though, also applied on domains that are
less formalized. In [5], for example, a software architecture has been derived
for a Quality Management Systems for efficient information retrieval and in
[67] a software architecture has been derived for insurance systems. In both
cases, several publications could be identified on the corresponding domains,
but in addition it was also necessary to refer to the factual knowledge and
experiences for the design of the software architecture. The solution domain
may thus consist of a combination of various forms of solution techniques
such as theories, solution domain experts, and experiences in the
corresponding domain.

In the following we will list the conclusions that we could obtain from
our experience in applying Synbad to the project on atomic transactions.

1. Explicit mapping of requirements to technical problems facilitates the
identification and leveraging of the necessary solution domains.

After our requirements analysis and technical problem analysis processes
as defined in sections 4.1 and 4.2 respectively, it appeared that the given
client requirements did not fully describe the right detail of the desired
problem. The basic requirement was to provide adaptable transactions
protocols that were derived from the various expected needs of different
dealers in different countries. From the initial requirement specification,
however, it followed that the adaptability requirement of transaction
protocols was interpreted only in a limited sense and referred to the
adaptation of a restricted number of concurrency control protocols. During
the problem analysis phase we generalized this requirement to the adaptation

www.manaraa.com

168 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

of various transaction protocols including transaction management,
concurrency control, recovery and data management techniques. After
interactions with the client and a study of the car dealer distribution system it
appeared that many transaction protocols were relevant although they had
not been explicitly mentioned in the requirement specification. We observed
that the technical problem identification is an iterative process between the
technical problem analysis and solution domain analysis processes.

On the one hand, we have directed and scoped our solution domain
analysis using the identified technical problems. Since every (sub-)problem
corresponds only to a restricted set of solution domain we did not need to
consider the whole solution domain space at once. For example, for the
concept DataManager we did not need to consider version management and
replication management because this was deliberately excluded from the
scope of the project. For the concept Scheduler we ruled out the solution
domain that dealt with semantic concurrency control techniques. The
identified technical problems provided us helpful and necessary indications
on where to search or not to search for the solution domain.

On the other hand, the technical problems could be better defined after
the solution domains were better understood. For example, only after a
solution domain analysis on concurrency control, as described in section 4.3,
we were better able to accurately define the sub-problems related with the
concept Scheduler. This observation may imply that for the problem analysis
phase one may require a domain engineer who is an expert on the
corresponding domain and knows the different technical problems that are
related to the domain. In our example project typically a transaction domain
expert at the early phase of problem analysis would be helpful.

2. Solution domain provides stable architectural abstractions
Synbad provides an explicit solution domain analysis process for

identifying the right abstractions. After the analysis of the solution domain
on transaction theory it appeared that this is rather stable and does not
change abruptly but only shows a gradual specialization of the transaction
concepts. Because the solution domain is stable it provides a reliable source
for providing stable architectural abstractions. In the solution domain
analysis process as described in section 4.3 we have illustrated how we could
derive stable concepts for the design of the atomic transaction architecture.
We were able to derive both the overall architecture and refine the
architectural concepts to the required level of detail.

The requirement of stable solution domains in Synbad implies that a
given problem can only be solved to the extent that it has been explored in
the solution domain. If it appears that the solution domain is not well­
established the software engineer may decide to terminate the synthesis

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 169

process, reformulate the technical problem or initiate a research on the
solution domain. The latter decision shows that the synthesis process may
provide important input for the scientific research because it may indicate
the issues that need to be resolved in the corresponding solution domains.

3. Solution domains provide rich semantics for realization and verification
of the architecture.

Solution domains not only provide stable abstractions but in addition
these abstractions have rich semantics which is important for the realization
and verification of the software architecture. As described in section 4.5 and
in [35] on architecture specification, we could derive rich semantics for the
architectural abstractions directly from the solution domain knowledge of
atomic transactions. We have illustrated this process for various components
in the atomic transaction architecture.

The solution domain is not only useful for deriving architectural
abstractions, but in addition it is also a reliable source for validating the
correctness of the developed architecture. We were able to identify many
publications that explicitly deal with correctness proofs of various
transaction protocols. We validated the architectural components and their
semantics by utilizing these knowledge sources [35].

4. Adaptability of an architecture can be determined by an explicit
alternative space analysis of the solution domain.

In Synbad, alternative space analysis is an explicit process. Thereby, for
each concept the set of alternatives is described and constraints are defined
among these alternatives. This together results in a depiction of the set of
possible alternative designs, that is, alternatives design space, that may be
derived from the given software architecture. As described in section 4.4 we
have, for instance, defined the alternatives for the concepts Scheduler and
RecoveryManager. From the solution domain analysis we have extracted the
constraints within each of these concepts and constraints that apply among
alternatives of these concepts [35]. We had two problems in the alternative
space analysis process for the example project. First, although we had
derived the conceptual architectures from the solution domain itself, during
the alternative design process it followed that not all the alternatives were
explicitly described in the literature. For example, for the concept Scheduler
we could identify only around 10-15 scheduler types that were described in
the literature. The other alternatives are primarily seen as variations of these
basic scheduler types. In our approach we could depict every single
alternative explicitly. The second problem that we encountered was that the
constraints within and among the alternatives of the concepts are generally
not explicitly stated in the literature and identifying these constraints is very

www.manaraa.com

170 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

time-consuming. Defining constraints of solution domain concepts requires
an improved understanding of these concepts. The existence of an explicit
description of these constraints may indicate the maturity level of the
corresponding solution domain. It appears that the transaction literature has
many well-established concepts and we could also identify some
publications that explicitly dealt with the constraints among the concepts,
however, this is not the case for all the concepts.

ACKNOWLEDGEMENTS

This research has been supported and funded by various organizations
including Siemens-Nixdorf Software Center, the Dutch Ministry of
Economical affairs under the SENTER program, the Dutch Organization for
Scientific Research (NWO, 'Inconsistency management in the requirements
analysis phase' project), the AMIDST project, and by the 1ST Project 1999-
14191 EASYCOMP.

6. REFERENCES

1. F. Ahsmann F and L. Bergmans. I-NEDIS: New European Dealer System, Project plan I­
NEDIS,1995.

2. M. Alqit. Course Notes: Designing Software Architectures. Post-Academic
Organization, 2000.

3. M. Ak~it, B. Tekinerdogan, F. Marcelloni & L. Bergmans. Deriving Object-Oriented
Frameworks from Domain Knowledge. in: M. Fayad, D. Schmidt & R. Johnson (eds.),
Building Application Frameworks: Object-Oriented Foundations of Framework Design,
Wiley, 1999.

4. M. Ak~it, B. Tekinerdogan and L. Bergmans. Achieving adaptability through separation
and composition of concerns, in Max Muhlhauser (ed), Special issues in Object-Oriented
Programming, Workshop Reader of the 10th European Conference on Object-Oriented
Programming, ECOOP '96, Linz, Austria, July, 1996.

5. E. Arend van der. Design of an Architecture for a Quality Management Push
Framework. MSc thesis, Dept. of Computer Science, University of Twente, 1999.

6. G. Arrango. Domain Analysis Methods. In Software Reusability, Schafer, R. Prieto-Diaz,
and M. Matsumoto (Eds.), Ellis Horwood, New York, New York, pp. 17-49, 1994.

7. N.S. Barghouti and G.E. Kaiser. Concurrency Control in Advanced Database
Applications, ACM Computing Surveys, Vol. 23, No.3, September, 1991.

8. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, Addison­
Wesley 1998.

9. A. Bernstein and N. Goodman. Concurrency Control in Distributed Database Systems,
ACM Transactions on Database Systems, 8(4): 484-502, 1983.

10. P.A. Bernstein and E. Newcomer. Principles of Transaction Processing, Morgan
Kaufman Publishers, 1997.

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 171

I I. P.A Bernstein, V. Hadzilacos and N. Goodman. Concurrency Control & Recovery in
Database Systems, Addison Wesley, 1987.

12. B.K. Bhargava (ed.). Concurrency Control and Reliability in distributed Systems, Van
Nostrand Reinhold, 1987.

13. G. Booch, I. Jacobson and J. Rumbaugh. The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

14. P. Bourque, R. Dupuis, A Abran, J.W. Moore and L. Tripp. The Guide to the Software
Engineering Body of Knowledge, Vol. 16, No.6, pp. 35-45, November/December, 1999.

15. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley & Sons, 1999.

16. W. Cellary, E. Gelenbe and T. Morzy, T. Concurrency Control in Distributed Database
Systems, North-Holland Press, 1989.

17. R.D. Coyne, M.A Rosenman, AD. Radford, M. Balachandran and lS. Gero.
Knowledge-Based Design Systems, Addison-Wesley, 1990.

18. C.l Date. An Introduction to Database Systems, Vol. 3, Addison Wesley, 1990.
19. D. Diaper (ed.). Knowledge Elicitation, Ellis Horwood, Chichester, 1989.
20. AK. Elmagarmid (ed.). Database Transaction Models for AdvancedApplications

Transaction Management in Database Systems, Morgan Kaufmann Publishers, 1992.
21. M. Firlej and D. Hellens. Knowledge elicitation: a practical handbook, New York,

Prentice Hall, 199 I.
22. H. Foerster Von. Cybernetics of Cybernetics, in: Klaus Krippendorff (ed.),

Communication and Control in Society, New York: Gordon and Breach, 1979.
23. D.D. Gajski, N.D. Dutt, A. Wu, and S. Lin. High-level synthesis: introduction to chip

and system design, Boston: Kluwer Academic Publishers, 1992.
24. R.L. Glass and I. Vessey. Contemporary Application-Domain Taxonomies, IEEE

Software, Vol. 12, No.4, July 1995.
25. Al Gonzalez and D.D. Dankel. The Engineering of Knowledge-Based Systems, Prentice

Hall, Englewood Cliffs, NJ, 1993.
26. J. Gray and A Reuter. Transaction processing: concepts and techniques, San Mateo,

Morgan Kaufmann Publishers 1993.
27. V. Hadzilacos. A theory of reliability in Database Systems, Journal of the ACM, 35(1):

121-145, January 1988.
28. T. Haerder and A. Reuter. Principles of Transaction-Oriented Database Recovery. ACM

Computing Surveys, Vol. 15. No.4. pp. 287-317, 1983.
29. R.W. Howard. Concepts and Schemata: An Introduction, Cassel Education, 1987.
30. I. Jacobson, G. Booch and 1 Rumbaugh. The Unified Software Development Process,

Addison-Wesley, 1999.
31. S. Jajodia and L. Kerschberg. Advanced Transaction Models and Architectures, Boston:

Kluwer Academic Publishers, 1997.
32. P.B. Kruchten. The 4+ I View Model of Architecture. IEEE Software, Vol 12, No 6, pp.

42-50, November 1995.
33. G. Lakoff. Women, Fire, and Dangerous Things: What Categories Reveal about the

Mind, The University of Chicago Press, 1987.
34. K. 1 Lieberherr, Adaptive Object-Oriented Software: The Demeter Method with

Propagation Patterns, PWS Publishing Company, Boston, 1996.
35. P. Loucopoulos and V. Karakostas. System requirements engineering, London [etc.],

McGraw-Hill, 1995.
36. N. Lynch, M. Merrit, W. Weihl and A Fekete. Atomic Transactions. Morgan Kaufmann

Publishers, 1994.

www.manaraa.com

172 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

37. M.L. Maher. Process Models for Design Synthesis, AI-Magazine, pp. 49-58, Winter
1990.

38. O. Maimon and D. Braha. On the Complexity of the Design Synthesis Problem, IEEE
Transactions on Systems, Man, And Cybernetics-Part A: Systems and Humans, Vol. 26,
No.1, January 1996.

39. M. Meyer and I. Booker. Eliciting and Analyzing Expert Judgment: A practical Guide,
Volume 5 of Knowledge-Based Systems, London: Academic Press, 1991.

40. A. Newell and. H.A. Simon. Human Problem Solving, Prentice-Hall, Englewood Clifss,
NJ, 1976.

41. C.H. Papadimitriou. The theory of Database Concurrency Control. Computer Science
Press, 1986.

42. J. Parsons and Y. Wand. Choosing Classes in Conceptual Modeling, Communications of
the ACM, Vol 40. No.6., pp. 63-69, 1997

43. D. Partridge and K.M. Hussain. Knowledge-Based Information Systems, McGraw-Hill,
1995.

44. G. Polya. How to Solve It: a New Aspect of Mathematical Method, New York,
Doubleday, 1957.

45. R. Prieto-Diaz and G. Arrango (Eds.). Domain Analysis and Software Systems Modeling.
IEEE Computer Society Press, Los Alamitos, California, 1991.

46. Y. Reich and S.I. Fenves. The formation and use of abstract concepts in design, in:
Concept Formation: Knowledge and Experience in Unsupervised Learning, D.H.I.
Fisher, M.I. Pazzani, & P. Langley (eds.), Los Altos, CA, pp. 323--353, Morgan
Kaufmann, 1991.

47. E.O. Roxin. Control theory and its applications. Amsterdam, Gordon and Breach
Science Publishers, 1997.

48. R. Rubin. Foundations of library and information science. New York, Neal-Schuman,
1998.

49. M. Shaw and D. Garlan. Software Architectures: Perspectives on an Emerging
Discipline,. Englewood Cliffs, NJ: Prentice-Hall, 1996.

50. M. Shaw. Moving from Qualities to Architectures: Architectural Styles, in: L. Bass, P.
Clements, & R. Kazman (eds.), Software Architecture in Practice, Addison-Wesley,
1998.

51. 1. Sommerville and P. Sawyer. Requirements engineering: a good practice guide,
Chichester, Wiley, 1997.

52. N.A. Stillings, S.E. Weisler, C.H. Chase, M.H. Feinstein, J.L. Garfield and E.L.
Rissland. Cognitive Science: An Introduction. Second Edition, The MIT Press,
Cambridge, Massachusetts, 1995.

53. B. Tekinerdogan. Synthesis-Based Software Architecture Design, PhD Thesis, Dept. Of
Computer Science, University of Twente, March 23, 2000.

54. B. Tekinerdogan. Overall Requirements Analysis for INEDIS, Siemens-
Nixdorf/University of Twente, INEDIS project, 1995.

55. B. Tekinerdogan. Requirements for Transaction Processing in INEDIS, Siemens­
Nixdorf/University of Twente, INEDIS project, 1995.

56. B. Tekinerdogan. Reliability problems and issues in a distributed car dealer information
system, INEDIS project, 1996.

57. B. Tekinerdogan and M. Ak~it. Adaptability in object-oriented software development,
Workshop report, in M. Muhlhauser (ed), Special issues in Object-Oriented
Programming, Dpunkt, Heidelberg, 1997.

www.manaraa.com

SYNTHESIS-BASED SOFTWARE ARCHITECTURE DESIGN 173

58. B. Tekinerdogan and M. Ak~it. Deriving design aspects from conceptual models. In:
Demeyer, S., & Bosch, J. (eds.), Object-Oriented Technology, ECOOP '98 Workshop
Reader, LNCS 1543, Springer-Verlag, pp. 410-414, 1999.

59. R.H. Thayer, M. Dorfman and S.c. Bailin. Software requirements engineering, Los
Alamitos, IEEE Computer Society Press, 1997.

60. W. Tracz and L. Coglianese. DSSA Engineering Process Guidelines. Technical Report,
ADAGE-IBM-9202, IBM Federal Systems Company, December, 1992.

61. LL. Traiger, J. Gray, C.A. Caltiere and B.G. Lindsay. Transactions and Consistency in
Distributed Database Systems, ACM Transactions on Database Systems, Vol. 7, No.3,
pp 323-342, September, 1982,

62. S.A. Umplebey. The Science of Cybernetics and the Cybernetics of Science, Cybernetics
and Systems, Vol. 21, No.1, 1990, pp. 109-121, 1990.

63. C. Vuijst. Design of an Object-Oriented Framework for Image Algebra. MSc thesis,
Dept. of Computer Science, University of Twente, 1994.

64. J.B. Warmer and A.G. Kleppe. The Object Constraint Language: Precise Modeling With
Uml, Addison-Wesley, 1999.

65. W. Weihl. The impact of recovery on concurrency control. Proceedings of the eigth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of Database Systems
March 29 - 31, Philadelphia, PA USA, 1989.

66. BJ. Wielinga, T. Schreiber and J.A. Breuker. KADS: a modeling approach to knowledge
engineering, Academic Press, 1992.

67. R. Willems. Ontwikkelen van verzekeringsproducten, dutch, translation: Development of
Insurance Products, MSc thesis, Dept. of Computer Science, University of Twente, 1999.

68. Z. Wu, R.J. Stroud, K. Moody and J. Bacon. The design and implementation of a
distributed transaction system based on atomic data types, Distributed Syst,
Engineering, 2, pp. 50-64, 1995.

www.manaraa.com

Chapter 6

LOOSELY COUPLED
COMPONENTS

Patrick Th. Eugster*, Rachid Guerraoui' and Joe Sventek**

, Department o/Communication Systems, Swiss Federal Institute o/Technology, Lausanne.
Communication Solutions Department, Agilent Laboratories Scotland, Edinburgh.
email: {Patrick.Eugster.Rachid.Guerraoui}@epfl.ch
" Communication Solutions Department, Agilent Laboratories Scotland, Edinburgh.
email: sventek@labs.agilent.com

Keywords: Distributed components, abstraction, asynchronous interaction, message
queuing, collections publish/subscribe

Abstract: Collections are widely used as a basic programming abstraction to store,
retrieve and manipulate objects. There are different known types of collections
(e.g., sets, bags, queues), offering various semantics for different application
purposes. A collection can offer a distributed flavor, that is, it can be
accessible from various nodes of a network. The elements of such a collection
are thus shared between the different nodes, and a distributed collection can be
viewed as a means of exchanging information between components, in a way
similar to a shared memory. This chapter presents Distributed Asynchronous
Collections (DACs). Roughly spoken, a DAC is capable of calling back an
interested party in order to notify for instance the insertion or removal of
elements. By viewing the elements of our Distributed Asynchronous
Collections (DACs) as events, these collections can be seen as programming
abstractions for asynchronous distributed interaction, enabling the loose
coupling of components. In that sense, the DACs we present in this chapter
marry the two worlds of object-orientation and event-based, so-called
"message-oriented", middleware. DACs are general enough to capture the
commonalities of various message-oriented interaction styles, like message
queuing and publish/subscribe interaction, and flexible enough to allow the
exploitation of the differences between these styles.

www.manaraa.com

176 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

1. INTRODUCTION

This chapter presents Distributed Asynchronous Collections (DACs),
simple object-oriented abstractions for expressing the many diverging
message-oriented interaction ("messaging") styles.

Motivation. With the emergence of wide area networks, the importance
of flexible, well-structured and also efficient communication mechanisms is
increasing. Basing a complex interaction between multiple nodes on
individual point-to-point communication models is a burden for the
application developer and leads to rather static and limited applications. In
mobile communications furthermore, it may not be simple for an application
to spot the exact location of a component at any moment. Also the number of
components interested in certain information may vary throughout the entire
lifetime of the system. All these constraints visualize the demand for more
flexible communication models, reflecting the dynamic nature of the
applications. The publish/subscribe and message queuing interaction styles
satisfy those requirements.

Messaging dialects. There are different established message-oriented
interaction models, each one presenting its respective advantages but also
shortcomings. The publish/subscribe interaction style involves a decoupling
in time and in space of information producers and consumers!: producers
publish information on a software bus while consumers subscribe to that
information bus [I] and are asynchronously notified of new information. The
decoupling nature of publish/subscribe is not only important for enterprise
computing products, but also for many emerging e-commerce and
telecommunication applications.

The classical topic-based or subject-based publish/subscribe style
involves a static classification of the messages by introducing group-like
notions [2], and is now incorporated by most industrial strength solutions,
e.g., [3, 4, 5, 6]. It is based on a push model, and messages are consumed by
several subscribers, i.e., message are dispatched on an all-oin (one-far-all)
base to the consumers.

Message queuing [7, 8, 9, 10] is an approach which traditionally
combines pull-style mechanisms on the consumer side with one-o in
semantics: messages are pushed into a queue and several consumers
concurrently pop messages from that queue. A message in general represents

Time decoupling: the interacting parties do not need to be up at the same time. Space
decoupling: the interacting parties do not need to know each other.

www.manaraa.com

LOOSELY COUP LED COMPONENTS 177

a request and is processed by a single consumer. This interaction scheme is
thus often used for public services, like health care, banking and finance.

As noticed in [11] in fact, some applications need pull- or push-style while
others require both. The same way, applications may require all-of-n or one­
of-n semantics, both with push- or pull-style interaction. Instead of bringing
all these variants to a common denominator, much emphasis is usually put
on their differences. The DACs we present in this chapter are simple
programming abstractions, which capture the different message-oriented
interaction styles, without blurring their respective advantages.

Messaging abstractions. A DAC differs from a conventional collection
by its distributed nature and the way objects interact with it: besides
representing a collection of objects (set, bag, queue, etc.), a DAC can be
viewed as a messaging system of its own. In fact, when querying a DAC for
objects fulfilling certain conditions, the client expresses its interest in such
objects. In other words, the invocation of an operation on a DAC enables the
expression of future notifications and can be viewed as a subscription.
According to the terminology adopted in the observer design pattern [12],
the DAC is the subject and its client is the observer.

Contributions. In short, within all messaging models none is clearly
better than the others for all application purposes. We illustrate in this
chapter how DACs can be used to express the different message-oriented
interaction styles, through the examples of topic-based publish/subscribe and
message queuing. We visualize furthermore how DACs enable the
unification of these messaging flavors in a single framework. Our DAC
framework can be seen as an extension of a conventional collection
framework. It enables to mix push and pull models, all-of-n and one-of-n
semantics along with different qualities of service (QoS). Our Java
implementation of the DAC framework is fully integrated with the standard
Java collection framework, and can be seen as an extension of latter one.

Roadmap. The remainder of this chapter is organized as follows. Section
2 recalls the various interaction styles in distributed computing and
motivates the need for weakly coupled communication models. Section 3
gives an overview of our DAC abstraction. Section 4 gives the basic DAC
API for topic-based publish/subscribe, whereas Section 5 shows the API's
enabling the expression of message queuing. Section 6 gives a simple
programming example using DACs for topic-based publish/subscribe. In
Section 7 we discuss some performance issues of our implementation, and
Section 8 discusses several design issues. Section 9 contrasts our efforts with

www.manaraa.com

178 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

related work. Finally Section 10 summarizes our work and concludes the
chapter.

2. MESSAGE-ORIENTED INTERACTION STYLES:
COMMONALITIES AND VARIATIONS

Before describing our DAC abstraction, we first overview the basics of
message-oriented interaction styles, by contrasting publish/subscribe
communication and message queuing with more traditional interaction
schemes. In addition, we compare the different flavors of messaging in more
detail. We point out the fact that each of the different variants has proven
certain advantages over others, which motivates the usefulness of unifying
them inside a single framework.

2.1 Publish/subscribe in Perspective

The publish/subscribe paradigm is a loose communication scheme for
modeling the interaction between components in distributed systems. Unlike
the classic request/reply model or shared memory communication,
publish/subscribe provides time decoupling (i.e., the interacting parties do
not need to be up at the same time) of message producers and consumers.
Figure 1 shows a comparison of the most common communication schemes:
message passing (singleton send) may also offer an asynchronous interaction
scheme, but lacks space decoupling (i.e., the interacting parties need to know
each other), just like the request/reply communication style. Indeed with
message passing, the information producer must have a means of locating
the information consumer to which the information will be sent, whereas
with the request/reply interaction model the consumer requires a reference to
the information producer in order to issue a request to ie. Publish/subscribe
combines time as well as space decoupling, since the information providers
and consumers remain anonymous to each other. This outlines the general
applicability of this communication model and makes it appealing3. Like
communication based on shared memory, publish/subscribe moreover allows

2 In most middleware solutions based on remote method invocations, references are by
default transient, i.e., an object which is destroyed and recreated (or migrated) restarts with
a new identity. Migration of objects requires specific support [35].

3 It is possible to build closer coupled communication models on top of loose ones and vice
versa, as proposed by [36] for instance. The resulting performance in the second case
however is generally poor.

www.manaraa.com

LOOSELY COUPLED COMPONENTS 179

to address several destinations (arity of n). Basically the publish/subscribe
terminology defines two players:

- Subscriber: A party which is interested in certain information (events,
messages) subscribes to that information, signaling that it wishes to
receive all pieces of information (event notifications, messages)
manifesting the specified characteristics. A subscriber party can be seen as
a consumer. Leasing is a special form of subscribing, in which the
duration of the subscription is limited by a time-out.

- Publisher: A party that produces information (events, messages) becomes
a publisher.

In most applications however, participating entItIes incorporate both
publishers and subscribers, which allows a very flexible interaction. This is
one of the main differences to pure push-based systems [13], where
participants act either as producers or as consumers and producers are
supposed to be several orders of magnitude higher in number than
consumers.

Time Space Arity
Request/Reply Coupled Coupled 1
Singleton Send Decoupled Coupled 1
Shared Memory Coupled Decoupled n

Message Queuing DecoupledCa) Decoupled nCb)

Publish/Subscribe Decoupled Decoupled n

Figure 1: Different communication models

2.2 Topic-based Publish/subscribe

When subscribing, a party expresses its interests in receIvmg certain
messages. Rarely a subscriber is eager to receive all produced messages.
Dividing the message space provides a means of confining the subscribers
requirements. The classic publish/subscribe interaction model is based on the
notion of topics or subjects, which basically resemble groups [2].
Subscribing to a topic T can be viewed as becoming member of a group T.
The topic abstraction however differs from the group abstraction by its more
dynamic nature. While groups are usually disjoint sets of members (e.g.,
group communication for replication [14]), topics typically overlap, i.e., a
participant subscribes to more than just one topic. In order to classify the
topics more easily, it is of great use to furthermore arrange them in a
hierarchy, e.g., [4, 6]. In this model, a topic can be a derived or more

www.manaraa.com

180 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

specialized topic of another one, and is therefore called subtopic. The use of
wildcards offers a convenient way of expressing cross-topic requests.

Figure 2 shows an example of topic-based subscribing. Subscriber Sj
subscribes to topic IChat and claims its interest in all subtopics. Hence Sj
does not only receive message m2 but also message mj published for topic
IChatllnsomnia. In contrast, S2 only subscribes to IChatllnsomnia and thus
does not receive message m2, which belongs to the supertopic IChat.

2.3 Message Queuing

In the publish/subscribe model, the action of subscribing describes a sort
of registration procedure for an interested party. Interests in events can also
be expressed through a more direct interaction. Message queuing is a well­
known alternative to publish/subscribe interaction, where consumers actively
pull messages from a shared queue. Such queues recall much the shared
memory model and their derivatives, e.g., tuple space [15]. In message
queuing, as the name reveals, messages are delivered to pullers in a FIFO
order, and every message is usually processed by a single consumer. In
contrast to the all-of-n (one-for-all) semantics found with the
publish/subscribe interaction style, this is frequently called one-of-n [4]4.
This one-of-n scheme is often used when requests have to be processed and
several servers are eligible to process those requests, but the same request
should not be processed more than once.

Figure 2: Topic-based subscribing

.. Publish

t Subscribe

t Deliver

P Publisher

Si Subscriber

The pull-style interaction of the consumers with a given queue can take
place in two ways:

4 By using the formalism of [37], one could say that every Nth occurrence of an event is
notified to a consumer, with N being the total number of consumers, and no event being
delivered to more than one consumer.

www.manaraa.com

LOOSELY COUPLED COMPONENTS 181

- Polling: A consumer can poll for new notifications. This task may waste
resources and is not well adapted to asynchronous systems. In fact, polling
based solutions tend to be very expensive and scale poorly: polling too
often can be inefficient and polling too slowly may result in delayed
responses to critical situations [5].

- Blocking pull: Another yet more synchronous pull-type interaction is
given by blocking pull-style interaction. In this scenario, a consumer
which tries to pull information is blocked until a new notification is
available. Just like the request/reply model however, this variant
introduces time coupling.

The way we have reported message-queuing in Figure requires two
clarifications. (a), the classical pull-style interaction of consumers with the
queue introduces a time coupling. This is however not a necessity, and as we
will see later, nothing prevents from using a push model in this context to
enforce time decoupling. (b), it can involve several consumers (n), with the
above mentioned restriction that a message is processed by a single
consumer.

Figure 3 shows an example. Suppose that P inserts first m] and then m2.
When C] or C2 pull the messages inserted by P, they are synchronized with
the queue. In this case, C/s request is served first, i.e., m] is returned to it.
Synchronization even occurs if the consumers are immediately released in
the absence of new message. On the other hand, producers are not coupled in
time, since they asynchronously notify events to the queue .

Figure 3: Message queuing

2.4 Mixing Push and Pull

• Publish

t Pull

P Producer

Cj Consumer

The essential difference between message queuing and publish/subscribe
is that in the former case an event is notified to one consumer only, while
with the latter style an event is notified to each consumer. The choice of
pull- or push-style interaction on the consumer side however is orthogonal to

www.manaraa.com

182 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

the number of receivers. The COREA Event Service [16] is an interesting
approach to publish/subscribe in the sense that it enables the mixture of pull­
and push-style consumers and producers.

In that sense, a general framework should relax restrictions of classical
message-oriented styles. With all-of-n semantics for instance, nothing
prevents from promoting pull-style interaction on the consumer side, and
even enabling concurrent push-style consumers. In the case of one-of-n
semantics, messages can also be pushed from the queue towards the
consumers. As we will show later, combining with concurrent pulling
consumers in that case is however more difficult.

The overall time coupling introduced by pulled producers however has a
higher impact on the system than pull-style interaction on the consumer side,
and should thus be avoided. Indeed, with pulling consumers, the
synchronization can be restrained more locally, but the synchronization
introduced by pulling producers propagates to the entire system. In the
following, we will thus always consider producers acting in push mode, and
ignore pullsuppliers (in the terminology of [16]). The question of push- or
pull-style interaction will only be raised with respect to the consumer side.

2.5 Delivery Semantics and Reliability Issues

In distributed systems, and in particular when considering
communication models and protocols, precise specification of the semantics
of a delivery is a crucial issue. Delivery guarantees are often limited by the
behavior of deeper communication layers, down to the properties of the
network itself, limiting the choice of feasible semantics. On the other hand,
different applications also may demand for different semantics. While
sometimes a high throughput is pre-eminent and a low reliability degree is
tolerable, some applications prioritize reliability to throughput. For this
reason, most common systems provide different qualities of service (QoS),
in order to meet the demands of a variety of application purposes [4, 6]5. The
guarantees offered by existing systems can be roughly divided into two
groups.

- Unreliable delivery: Protocols for unreliable delivery give few guarantees.
These semantics are often used for applications where the throughput is of
primary importance, but the loss of certain messages is not fatal for the
application.

5 [4] adopts the notion of delivery service.

www.manaraa.com

LOOSELY COUPLED COMPONENTS 183

- Reliable delivery: Reliable delivery means that a message will be
delivered to every subscriber despite certain failures. Usually the failure or
the absence of the subscriber itself is not considered, i.e., if the subscriber
has failed, the message might not be delivered to it and the reliability
property is not considered violated. When using persistent storage to
buffer such messages until the subscriber is back on line, a stronger
guarantee is given. This is sometimes referred to as certified delivery, [4]
or guaranteed delivery [9].

3. DISTRIBUTED ASYNCHRONOUS
COLLECTIONS: OVERVIEW

This section gives an overview of our approach to messaging, by first
introducing Distributed Asynchronous Collections as key abstractions. We
show the relationship between these abstractions and message-oriented
communication models. This allows discussing in the following sections
how these abstractions allowed us to build several different messaging styles
inside a unified framework.

3.1 DACS as Object Containers

Just like any collection, a DAC is an abstraction of a container object that
represents a group of objects. It can be seen as a means to store, retrieve and
manipulate objects that form a natural group, like a mail folder or a file
directory. Unlike a conventional collection, a DAC is a distributed collection
whose operations might be invoked from various nodes of a network. In
contrast to remotely accessible collections like the ones described in [17]
however, DACs are asynchronous and essentially distributed: DACs are not
centralized on a single node, in order to guarantee their availability despite
certain failures6 • Instead, they can be viewed as replicated or fragmented.
Participating processes act with a DAC through a local proxy. The proxy is
viewed as a local collection and hides the distribution of the DAC, as shown
in Figure 4. The proxy acts in a way similar to a cache, and the type of the
DAC depends on the consistency between the respective local proxies. As a
consequence of distribution, a globally unique name is assigned to every

6 The distributed collections presented in [17] are centralized collections that can be
remotely accessed through RMI. Similarly, the OMG has defined a collection framework
as part of the CORBA services specification [16]. The specification aims at a centralized
model, but distributed implementations are not ruled out.

www.manaraa.com

184 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

DAC. This provides a uniform manner for participants to designate the
DAC(s) they wish to "connect" to.

t Send

P Publisher

Si Subscriber

Figure 4: DAC distribution

3.2 The Asynchronous Flavor of DACS

Our notion of Distributed Asynchronous Collection represents more than
just a distributed collection. In general, a synchronous invocation of a distant
object can involve a considerable latency, hardly comparable with that of a
local one. In contrast, asynchronous interaction is supported with our
collections. By calling an operation of a DAC, one can express an interest in
future notifications. When querying a DAC for objects of a certain kind, the
party interacting with the DAC expresses its interest in such objects. In the
case of pull-style interaction, the DAC replies to the querying party. The
DAC can also register the interest and defer the reply (replies): the interested
party is asynchronously notified when an object matching the query is
eventually "pushed" into the DAC.

There is a strong resemblance between such a push model and the notion
of future [18] (future type message passing [19]), that describes a
communication model in which a client queries an asynchronous object for
information by issuing a request to it. Instead of blocking however, the client
can pursue its processing. As soon as the reply has been computed, the
object acting as server notifies the client. Latter one may query the result
(lazy synchronization or wait-by-necessity [20)), or ignore it. Figure 5
compares the two paradigms. When programming with DACs, the subscriber
can be viewed as the client. The DAC incarnates a server role in this
scenario, since the publishers, which are the effective information suppliers,
remain anonymous.

By calling an operation on the DAC, the caller requests certain
information. The main difference with futures lies in the number of times
that information is supplied to the client. Within the notion of future, only a
single reply is passed to the client,7 whereas with DACs, every time an

7 ABCLII represents an exception, in the sense that several replies may be returned [19].

www.manaraa.com

LOOSELY COUPLED COMPONENTS 185

information which is interesting for the registered party is created, it will be
sent to it.

Asynchronous Invocation Publish/Subscribe with DACs

Future

@ Invocation 1 @
! Notifications

Invocation

Client Asynchr. Object Subscriber DAC

~ Thread

Figure 5: DACs vs. future

4. TOPIC-BASED PUBLISH/SUBSCRIBE WITH
DACS

Traditionally, topic-based publish/subscribe enables a strong decoupling
of participants by involving a strongly asynchronous interaction.
Furthermore it provides for platform interoperability, by relying only on
topic names (strings) as references for distributed participants to meet. In
this section we use topic-based publish/subscribe as a first example of a
messaging style that can be expressed with DACs.

4.1 Collections and Topics

Expressing ones interest in objects of a certain kind can be viewed as
subscribing to objects of that kind. When considering the classical topic­
based approach to publish/subscribe, a DAC can be pictured as an extension
of a conventional collection and also as a representation for a topic. It is
always possible to insert a new element into a DAC. In the sense of
publish/subscribe, inserting an object into a DAC also means to publish that
object for the topic represented by the DAC. Every DAC can thus be viewed
as a publish/subscribe engine of its own.

In our system, each topic is denoted by a name, like Chat. Topics can
have specializations, or subtopics, and connecting to a topic requires the
name in a URL-type format. Typically, IChatlInsomnia is a reference to the
topic called Insomnia which is a subtopic of Chat. The root of the hierarchy
is represented by an abstract topic (denoted by I). Top-level topics, which are
no specializations of already existing ones, are subtopics of the abstract root

www.manaraa.com

186 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

topic only. The all-of-n semantics of topic-based publish/subscribe enables
to easily trigger subscriptions to subtopics as well.

4.2 DAC Interfaces: Overview

We present the main interfaces related to topic-based publish/subscribe of
our DAC realization in Java. In the context of this chapter, we will limit
ourselves to describing basic functionalities which are common to
sub interfaces, in order to show their similarity to operations on conventional
centralized collections.

Messages. Existing publish/subscribe frameworks introduce specialized
message types, e.g., [21]. Our approach frees the application programmer
from the burden of marshalling and unmarshalling data into and from
dedicated messages. In our context, a message can be basically of any kind
of object. In Java, this is expressed by allowing any object of class
java. lang. Obj ect to be passed as a message8.

Callbacks. In the case of push-style interaction between a DAC and a
consumer, the DAC will call back the consumer in order to asynchronously
notity it of events. Consumers acting in a push mode must for that purpose
provide an object which implements the Notifiable callback interface
given in Figure 6. It extends the ExceptionHandler interface, which
any participant (pull or push) must provide in order to learn about and react
to exceptions. Furthermore, this allows the DAC to know the number of
effectively "connected" participants.

public interface ExceptionHandler {

}

public void handleException (Exception ex,
String DACName);

public interface Notifiable
extends ExceptionHandler {
public void notify (Object m, String DACName);

}
Figure 6: Callback interfaces for DACs

8 In order to be conveyabJe, a Java object should furthermore implement the
java.io.SerializabJe interface [38], which contains no methods.

www.manaraa.com

LOOSELY COUP LED COMPONENTS 187

DAC interface hierarchy. Similarly to the Java collection framework,
our DAC framework presents several interfaces which form a hierarchy. The
root of the hierarchy is the DACollection interface (Figure 7). It inherits
from the standard Java java. util . Collectioninterface, since a
DAC is in the first place a collection. It mainly adds functionalities related to
its distributed nature: a DAC is characterized by a name, with allows it to be
referenced from any node.

The DAC hierarchy is roughly split in two subhierarchies, representing
publish/subscribe interaction and message queuing respectively. This
bipartition is given by the different interaction styles. In fact,
publish/subscribe enables an easy combining of both pull- and push-style
interacting consumers at the topic level. A puller will register its interest just
like a subscriber, but without being called back. It will then pull
notifications, and will thus in principle be notified of all produced events.
This mixture is possible thanks to the all-of-n flavor of the topic-based
publish/subscribe scheme we adopt. We will see in the next section that this
is not straightforward in the case of message queuing.

Distributed Asynchronous Sets. The interface DACollection is thus
used to express common functionalities of DAC types for all messaging
styles offered by our framework. A DAC for publish/subscribe is of a more
specific type, Distributed Asynchronous Set (DAS). The corresponding
interface, DASet, is given in Figure 7.

4.3 Basic Methods

Figures 7 summarizes the main methods of the basic interfaces involved
in our topic-based publish/subscribe scheme. Methods inherited from Java
collections are not denatured but adapted, and we connote them as
synchronous in contrast to the asynchronous methods added mainly to
express consumer-side push-style interaction.

Synchronous methods. These synchronous methods are adapted from
centralized collections:

- contains (Obj ect): A DAC is first of all a representation of a
collection of elements. This standard method allows querying the
collection for the presence of an object.

- add (Obj ect) : This method allows to add an object to the collection.
The corresponding meaning for a DAC is straightforward: it allows
publishing a message for the topic represented by that collection. An

www.manaraa.com

188 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

asynchronous variant of this method (registering a callback object) would
consist in advertising the eventual production of notifications and would
lead to pulling producers.

- get (...) : Similarly to a centralized collection, calling this method on a
DASet allows to retrieve objects. This implements the pull model. The
variant with a timeout argument represents a blocking pull, while the
argumentless counterpart expresses polling.

public interface DACollection
extends j ava.util. Collection

{ 1* from original Collection interface *1
public boolean contains(Object message);
public boolean add(Object message);

}

1* distribution obliges *1
public String getName();
public boolean hasName(String name);

public interface DASet
extends DACollection, java.util.Set

{ 1* pull-style: register *1

}

public boolean contains(ExceptionHandler h);
public boolean containsAll(ExceptionHandler h);
1* pull-style interaction *1
public Object get(ExceptionHandler h);
public Object get(ExceptionHandler h,

long timeout);

1* push-style: subscribe *1
public boolean contains(Notifiable n);
public boolean containsAll(Notifiable n);

1* unregister/unsubscribe *1
public void clear(ExceptionHandler h);

Figure 7: Interfaces DACollection and DASet (Excerpts)

www.manaraa.com

LOOSELY COUPLED COMPONENTS 189

Asynchronous methods. The following asynchronous methods in the
DASet interface reflect the decoupling nature of topic-based
publish/subscribe specific to DACs.

- contains (...) : The goal of this method without Obj ect argument is
not to check if the collection already contains an object revealing certain
characteristics, but is to manifest an interest in any such object, that should
be eventually pushed into the collection. This method serves as a
registration procedure for an interested party. It comes with two
signatures: (1) an argument of Notifiable signals that the registering
party is a subscriber which wishes to be asynchronously notified of new
events. (2) In the case of a pulling client, an ExceptionHandler must
be provided. In any case, the registration expresses all-of-n semantics.

- containsAll (...) : This method offers the same signatures than the
previous method. The difference is that a subscription is generated for all
subtopics of the topic represented by this DAS.

- clear (...) : While the conventional argument-less clear () method
allows to erase all elements from the collection, this asynchronous variant
expresses the action of unsubscribing, resp. unregistering.

The following section introduces more asynchronous methods related to
message queumg.

5. MESSAGE QUEUING WITH DACS

Besides publish/subscribe, message queuing is another widely adopted
messaging style. In this section, we present how DACs provide a natural
way of expressing message queuing.

5.1 Distributed Asynchronous Queues

By viewing event notifications as objects, a DAC can be seen as an entity
representing related objects or event notifications. The queuing interaction
model fits intuitively into this philosophy: the abstraction used for message
queuing is the queue, which is a specific collection type. Distributed
Asynchronous Queues (DAQs) are a specific type of DACs, used to reflect
message queuing. What distinguishes them from other DACs is their one-of­
n flavor,which ensures that a message object pushed into a DAQ will not be
consumed by more than one consumer.

www.manaraa.com

190 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Inheritance issues. Queues (centralized ones) are usually seen as a
special kind of sequences, a subtype of sets, since the elements are strictly
ordered. However, we use sets and sequences to model topic-based
publish/subscribe, whilst queues represent message queues, involving
different interaction types. While, push- and pull-style invocations can be
easily mixed in the case of topic-based publish/subscribe, the one-of-n
semantics associated with message queues makes a mixture difficult: non­
blocking consumers would be strongly penalized, since incoming messages
would be instantaneously pushed towards subscribers. Therefore the
DAQueue interface does not inherit from DASet (Figure 8).

Asynchrony issues. In our framework, classical pull-style queues
implement the DABasicQueue interface. Combining one-of-n semantics
with push-style interaction on the consumer side is very interesting since it
enforces asynchronous interaction. Figure 8 shows also the
DACallbackQueue interface, which notifies consumers of new messages.
By default, a round-robin policy is applied, but specialized subtypes
distribute the messages according to more subtle policies, e.g.,
proportionally to priorities associated to the consumers.

Methods. A consumer expresses its interest in messages of a DAQ by
means of the following methods:

- push (Obj ect) : This method is invoked to insert a new element into
the queue. It has the same effect than invoking the add () method on the
queue.

- remove (...) : The effect of invoking this method is not to trigger the
removal of an object already contained in the queue, but to express an
interest in being notified whenever a matching object is inserted in the
collection. The object that is returned to a consumer is immediately
removed thereafter. In the case of a callback queue, a callback object is
registered.

- pop (...) : In the case of a pull-style queue, the consumer must interact
more directly with the queue to receive objects. This is done by pulling the
queue through this method. The variant with timeout argument expresses a
blocking pull interaction.

5.2 Subqueues

DACs can be used to represent message queues as well as
publish/subscribe channels. Besides push-style interaction of consumers with

www.manaraa.com

LOOSELY COUPLED COMPONENTS 191

queues, other publish/subscribe features can be transposed to message
queues as well.

public interface DAQueue
extends DACollection, j ava.util. Set

{ .. .1* same effect than "add" * I
public boolean push(Object obj);

1* unregister/unsubscribe *1
public void clear(ExceptionHandler h);

}
public interface DABasicQueue

extends DAQueue
{ .. .1* pull-style: register *1

}

public boolean remove(ExceptionHandler h);
1* pull-style: register with subqueues *1
public boolean removeAll(ExceptionHandler h);

1* pull-style interaction *1
public Object pop(ExceptionHandler h);
public Object pop(ExceptionHandler h, long timeout);

public interface DACallbackQueue
extends DAQueue

}

{ .. .1* push-style: subscribe *1
public boolean remove (Notifiable n);
1* push-style: subscribe with subqueues *1
public boolean removeAll(Notifiable n);

Figure 8: Interfaces DAQueue, DABasicQueue and DACallbackQueue (Excerpts)

Arranging topics in a hierarchy enables to automatically generate
subscriptions to subtopics. The same way, a subscription to a DAQ can be
applied to its subordinates. DAQs, wether for push- or pull-style consumers,
are arranged in a hierarchical name space. When pulling a DAQ Q and its
subqueues, Q is checked for new values. If none is available, Q's subqueues

www.manaraa.com

192 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

are successively checked. Similarly to the containsAll () method in the
DASet interface, we have for that purpose added the removeAll ()
method. The names for DAQs hence follow a URL-like notation. Because of
the differences between topics and queues, and between pull-style and push
style queues, the different corresponding collection types involve different
naming hierarchies: subscribing to a topic and its subcollections does not
make much sense if these are queues used in pull-mode.

As a consequence of this separation there might very well be a topic
IChatlInsomnia as well as a queue with the same name IChatlInsomnia.
Conflicts between the different semantics are avoided by using separate
name spaces for (1) topics, (2) pull queues and (3) push queues.

6. PROGRAMMING WITH DACS

This section describes a simple example application using the flexibility
of Distributed Asynchronous Collections. It shows how to implement chat
sessions based on simple DACs for topic-based publish/subscribe. We will
concentrate on two users, Alice and Tom. They are both chat addicts, and
love to chat deep into the night. Therefore they subscribe to the topic
Insomnia which is a subtopic of Chat to receive all messages from like­
minded chatters (see Figure 9). For the sake of simplicity, we will assume
that this evening Tom is missing inspiration, and therefore takes a pure
subscriber role. Alice on the other hand, is very talkative, and publishes
several messages. Figure 10 shows class ChatMsg, which represents a
possible message class for this application.

Alice Tom

Figure 9: Chatters

.. Publish

t Subscribe

t Deliver

P Publisher

S Subscriber

www.manaraa.com

LOOSELY COUPLED COMPONENTS

public class ChatMsg

}

implements j ava.io. Serializable
{ private String sender;

private String text;
public String getSenderO { return sender; }
public String getTextO { return text; }
public ChatMsg(String sender, String text) {

this.sender = sender; this.text = text; }

Figure 10: Event class for chat example

6.1 Publishing for a Topic

193

When making use of topic-based publish/subscribe, a topic is represented
by a DAS, as seen previously. In order to access a DAS from a process, a
proxy must be created. This requires an argument denoting the name of the
topic it bears. To the application, the action of creating a proxy is similar to
creating a local collection, except that a name must be provided as argument.
The DAC instance called mychat in Figure 11 henceforth allows us to access
the topic IChatllnsomnia. The instantiated class DAStrongSet is an
implementation which provides reliable delivery of messages to all
subscribers. Now that a proxy has been created, it is possible to directly
publish and receive messages for the topic associated to that DAS.

Creating an event notification for a topic consists in inserting a message
object into the DAC by issuing a call to the add () method (see Section 4),
from where it becomes accessible for any party.

DASet mychat =

new DAStrongSetC'IChat/lnsomnia");
String me = "Alice";
ChatMsg m = new ChatMsg(me, "Hi everyone");
mychat.add(m);

Figure 11: Publishing a message

6.2 Subscribing to a Topic

In this context, it is more favourable for Tom to be notified automatically
when a new message has been published, than to waste computation time on
polling activity. In order to subscribe to a topic an interested party must
provide a callback object implementing the Notifiable interface. The

www.manaraa.com

194 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

callback method comprises two arguments. The first argument represents the
effective message, and the second argument represents the name of the DAC
the message was published for. This provides more flexibility, since the
same subscriber object can be used to receive messages related to several
topics. As shown in Figure 12, Tom is only interested in a specific chat
session Insomnia. Otherwise, Tom would have subscribed by using
containsAll () .

7. IMPLEMENTATION ISSUES

This section discusses the realization of our first DAC implementation,
including performance measurements made in the context of topic-based
publish/subscribe. We draw preliminary conclusions of our prototype, which
has been developed in pure Java and relies on UDP, thus increasing its
portability.

class ChatNotifiable
implements Notifiable

{ public void handlException(Exception ex,
String DACname) {

ex. printS tackTraceO;

}

}
public void notify(Object m, String topic) {

System.out.println(((ChatMsg)m).getTextO);
}

DASet sleeplessChatters =

new DAStrongSet("/Chat/lnsomnia");
Notifiable n = new ChatNotifiableO;
sleeplessChatters. contains(n);

Figure 12: Topic-based publish/subscribe with DACs

7.1 Inside DACS

The effective DAC class as it is perceived by the application only
represents a small portion of the underlying code. Redundant code has been
avoided by a modular design and using inheritance. Figure 13 shows the

www.manaraa.com

LOOSELY COUPLED COMPONENTS 195

different layers in our implementation. These layers do not necessarily
correspond to Java classes, but represent protocol layers.

Application

DAC

Network

UDP

IP

Figure 13: Layers

- The DAC layer: This layer is composed of the classes implementing
directly the DAC interfaces. They are rather lightweight classes, which
delegate general functionality to the underlying layer. Their tasks are
similar to centralized container classes. They mainly take care of the local
management of messages, and furthermore handle the subscriptions. The
most frequent interaction model is the callback model (push-model),
where subscribers do not poll for new messages but are called back upon
incoming messages. In that case the DAC applies a predefined threading
model, by assigning notifications to threads.

- The Network layer: The Network layer regroups common functionalities
of all DACs, like publishing messages or forwarding subscription
information. It hides any remote party involved in same topics from the
DAC layer. This layer maintains a form of network topology knowledge,
which basically consists of its immediate neighbors.

- The UDP layer: Our entire messaging architecture is finally implemented
on top of UDP. UDP is a non reliable protocol, which offers us the
looseness required for asynchronous interaction. Java offers classes for
UDP sockets and datagrams (java.net.DatagramPacket and
DatagramSocket), which are pretty close to the metal.

7.2 Performance

The performance tests of our prototype were made on HP workstations
running HP-UX 10.20 and NM 1.1.5 and 1.1.6. on a normal working day.
The implementation uses a marshallinglunmarshalling procedure built from
scratch and optimized for each event type (the Java serialization classes were
not used,since they are usually considered rather slow). Four example
message types were considered with all-of-one semantics (topic-based
publish/subscribe):

www.manaraa.com

196 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

- Integer: This corresponds to the basic Java int type.
- String:: Java type String with a length varying between 10 and 20.
- DetailRecord: This is a class containing four attributes, of which two

represent dates (Java type Date) and two are strings (Java type String).
- CallDetailRecord: A subtype of DetailRecord. In addition to

the attributes of the latter one, a CallDetailRecord furthermore
contains 4 integers and two strings.

In our measurement scenario, several subscribers asynchronously receive
events for a topic where a publisher produced the events. The numbers of
messages considered for a single run of the experiment varied between 10
and 1000 and the measures obtained conveyed an average result after several
experiments of the same profile.

Figure 14 shows the latency when publishing. For example, a publisher
needs 3s to publish 100 events of type DetailRecord. They include the time
for marshalling each of the events and the time to put the events into the
UDP socket.

Figure 15 shows the global throughput for the same scenario. It takes for
instance 5s until a subscriber has received 100 events of type
DetailRecord. The 5s correspond therefore to the time spent at the
publisher side and the subscriber side of the DAC. They include the time for
marshalling, remote communication and unmarshalling. These simple
measurements allowed us to do draw several preliminary conclusions:

- The complexity of the event type has a heavier impact on the time it takes
for a publisher to send events then on a subscriber to receive events. This
is not surprising because in the first case, the marshalling time is more
significant (there is no inherent cost of remote communication).

- It might look surprising that integers take longer than strings. In this
implementation however, everything is converted to strings in the
serialization procedure.

- Finally, the overall measures confirm the very fact that nowadays,
optimizing marshalling is at least as important as optimizing remote
communication.

www.manaraa.com

LOOSELY COUPLED COMPONENTS

[s]

Integers Strings CDR CDR++

Figure 14: Latency

[s]

6 Jr----------------------------,

51k-------------------------~

4L1------------------1

3L1---------------~

2L1---~~--~==---

o
Integers Strings CDR CDR++

Figure 15: Throughput

8. DISCUSSION

i:lIN= 10
aN= 100

DN=1000

N: nb messages

N: nb messages

197

This section discusses two design issues concerning the consistency of
queues and their behavior in a hierarchy.

8.1 Scalability issues

A very simplistic implementation of a callback queue consists in using a
round robin protocol locally at every producer to determine to which
consumer a message should be sent. Pull-style queues are more difficult to
implement in a distributed manner than callback queues. Intuitively, a queue
accessed through pulling consumers involves more synchronization, not only
a synchronization of the queue with each consumer individually, but also

www.manaraa.com

198 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

with respect to all consumers. Strong synchronization affects consistency,
and our current implementations of the DABasicQueue interface are
therefore centralized implementations. Note that this is a general issue,
which is not a consequence of our approach to queues. Topics are inherently
better suited for large scale, exactly because push-oriented solutions require
less synchronization than pull-style ones, especially when combined with an
all-of-n flavour. For that reason, queues are in contrast to topics deployed
more locally.

8.2 Polling Subqueues

With callback queues, the subscription to a queue Q and its subqueues
can be realized by multiplexing the subscription to the subqueues of Q. In
other terms, a subscription will be generated to each queue Q' in the
sub hierarchy in which Q is root.

With classical message queues, i.e., used with pulling consumers, the
issue of involving subqueues is more delicate, since it additionally
introduces synchronization between (sub)queues. Suppose a hierarchy of
queues accessed in non-blocking pull-style. Imagine the top-level queue Q is
polled, and does not contain any value to return. Hence the sub queues have
to be polled. This can be done either in a depth-first order (by first increasing
the level), or level by level. If a subqueue Q' is being polled, it could very
well happen that a previously empty queue, for instance the root queue Q
itself is populated in the meantime. The hierarchical disposition of queues
implicitly expresses a priority, which would in this case be violated when
returning a value of Q '.

The queues we propose do not prevent this case, i.e., they are
implemented according to the convention that the queue hierarchy is
checked level by level until the first value is found.

8.3 Blocking Pull

Blocking pull-style interaction on a queue subhierarchy is even harder to
realize effectively. A repetitive polling of every queue leads to scanning the
entire hierarchy one by one for new values, and restarting at the root if the
previous run terminated unsuccessfully, i.e., no new value was available in
any queue. This might however lead to an important load of the system. On
the other hand, when using a blocking pull-style interaction with every
subqueue, one might end up in the situation where several messages are
obtained. To avoid the drawbacks of both scenarios, we have chosen a
specialized protocol, which proceeds by two steps. First, a queue, which has
a value can propose it to a DAQ proxy which has blocked in behalf of a

www.manaraa.com

LOOSELY COUPLED COMPONENTS 199

consumer. The DAQ proxy may then accept the value or refuse it, which
means that it has already received a value from another (sub)queue.

9. RELATED WORK

During the last years, the need for large-scale event notification
mechanisms has been recognized. Much effort has therefore been invested in
this domain, and a multitude of approaches has emerged from academic as
well as industrial impulses. We present here the main characteristics of
related approaches and we compare them with our Distributed Asynchronous
Collections.

9.1 Specifications

In order to integrate the publish/subscribe communication style into
existing middleware standards, specifications have been conceived by both
the Object Management Group [16, 22] and Sun [21, 23]. For our
comparisons, these approaches are the most relevant, since they cover more
than one messaging style. Many messaging system vendors implement the
API's corresponding to the messaging style(s) their service exploits.

CORBA Event Service. The OMG has specified a CORBA service for
publish/subscribe oriented communication, known as the CORBA Event
Service. The specification is aimed to be general enough to not preclude sub­
specifications and various implementations that would match the needs of
specific applications. According to the general service specified however, a
consumer interacts with an event channel expressing thereby an interest in
receiving all the events from the channel. In other words, filtering of events
is done according to the channel names, which basically correspond to topic
names. Hierarchical disposition of channels and utomatic subscriptions to
subchannels is however not explicited. Event channels are CORBA objects
themselves, and in current implementations they are centralized components.

Therefore these engines manifest a strong sensitivity to any component
failure, which makes them unsuitable for critical applications.

CORBA Notification Service. The lacks of the event service
specification have been realized early, namely concerning QoS and realtime
requirements. After the emergence of extended and proprietary approaches
aimed at fixing the shortcomings of the event service (e.g., [24]), the OMG

www.manaraa.com

200 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

has issued a request for proposal for an augmented service, the COREA
Notification Service [22]. A notification channel is an event channel with
additional functionalities. There is a strong support for typed events, and
notions like priority and reliability are explicitly dealt with. The notification
service does however not express any distinction betweeri all-of-n and one­
of-n semantics.

Java Message Service. The Java Message Service [21] is a specification
from Sun. Its goal is to offer a unified Java API around common messaging
engines. Its generic nature enables it to conform to a maximum number of
existing systems. Certain existing services implement the JMS, but to our
knowledge no messaging system has been implemented with the goal to
merely support the JMS API directly. Both topic-based publish/subscribe
and message queuing are supported, and are represented by different
abstraction types (Topic I Queue).

Jini. The Jini Distributed Event Specification [23] explicitly introduces
the notion of event kind. Registration of interest indicates the kind of events
that is of interest, while a notification indicates an occurrence of that kind of
event. One can combine this notion with that of JavaSpace [25] to provide
support for topic-based publish/subscribe notification. Inspired by Linda
[15], a JavaSpace is for example a container of objects that might be shared
among various suppliers and consumers. The JavaSpace type is described by
a set of operations among which a read operation to get a copy of an object
from a JavaSpace, and a notify operation aimed at alerting some potential
consumer object about the presence of some specific object in the
JavaSpace. Combined with the Jini Distributed Event interfaces, one can
build a publish/subscribe communication scheme where a JavaSpace plays
the role of the event channel aimed at broadcasting events (notifications) to a
set of subscriber objects. The classification of events is however based on
the types of the events, and it is not clear whether it is possible to combine
one-of-n semantics with asynchronous notifications.

These standards are based on specifications and it would be interesting to
see how one could implement services that comply with these standards
using DACs. In contrast to these systems, our DAC programming
abstraction focuses on expressing the differences and commonalities of
message-oriented interaction styles by subtyping a single basic abstraction.

9.2 Pioneers

The specifications presented above have followed the impulses given by
academic research and industrial players. For the sake of brevity we do not

www.manaraa.com

LOOSELY COUPLED COMPONENTS 201

present all existing systems, but only the ones that we believe have had the
strongest influence on the evolution of the message-oriented interaction
styles we have presented in this chapter.

Topic-Based Systems. Most industrial strength solutions involve topic­
based publish/subscribe, like Smartsockets [3] or TIB/Rendezvous [4J.

In Smartsockets, an event channel can accept subscriptions for specific
topics. A consumer receives all the event notifications that belong to the
topic to which it has subscribed. The topic defines a kind of virtual
connector between objects of interest and recipients. If a producer is
interested in producing an event on a number of topics or channels, it has to
explicitly publish the event on all of them. Event notifications are
represented by records, nevertheless custom event types may be defined.

A similar approach was adopted in the development of the
TIB/Rendezvous infrastructure. A hierarchical naming model corresponds to
the hierarchical organization of the entities of interest. Just as Uniform
Resource Locators (URLs) provide a way of locating and accessing Internet
resources, a naming scheme is provided to locate and access events of
interest. The naming scheme proposed can use wildcards, which allows to
subscribe to patterns of topics. TIB/Rendezvous provides a certain degree of
fault-tolerance, and makes usage of IP-multicast. Event notifications are
composed of a set of typed data fields, including the topic.

Message Queuing. The IBM MQSeries [7] is one of the original and
definitely the most popular message queuing system. The Application
Messaging Interface (AMI) spans message queuing as well as
publish/subscribe interaction.

MQSeries is a complete framework, in the sense that it is a general solution.
It addresses aspects such as security, transactions and especially message
storage (message warehousing). Message queues are created explicitly
through queue managers. MQSeries is based on the notions of message flow
and intermediate message brokers, and implements JMS [26].

Most of the above systems offer API's in object-oriented languages like
Java. These solutions however did not undergo a fundamentally object­
oriented design. Messages are seen as "flat" structures, and are often reduced
to a set of system-defined types. We believe that custom message types and
classes are very important to ease development. In [27] we extend this idea
by introducing type-based publish/subscribe, an alternative static
subscription scheme based on the message types.

www.manaraa.com

202 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

10. CONCLUDING REMARKS

We conclude this work by considerations on current practices in object­
oriented distributed programming, and the role of DACs with respect to
those practices.

Delusions about distributed objects. It has long been argued that
distribution is an implementation issue and that the very well known
metaphor of objects as "autonomous entities communicating via message
passing" can directly represent the interacting entities of a distributed
system. This approach has been conducted by the legitimate desire to
provide distribution transparency, i.e., hiding all aspects related to
distribution under traditional centralized constructs. One could then reuse, in
a distributed context, a centralized program that was designed and
implemented without distribution in mind.

As argued in [28, 29, 30] however, distribution transparency is a myth
that is both missleading and dangerous. Distributed interactions are
inherently unreliable and often introduce a significant latency that is hardly
comparable to that of a local interaction. The possibility of partial failures
can fundamentally change the semantics of an invocation. High availability
and masking of partial failures involves distributed protocols that are usually
expensive and hard, if not impossible to implement in the presence of
network failures (partitions).

Objects vs messages. Message-oriented middleware has emerged during
the last few years as a reply to the limitations of the derivatives of the remote
procedure call (RPC) interaction style (DCOM [31], Java RMI [32],
CORBA [33]).

Message-centric approaches, based for instance on the publish/subscribe or
message queuing paradigms, are however often claimed to be inherently
incompabitle with object-orientation, on the pretext that "objects" cannot
really support the requirements of a messaging middleware [34]. This belief
has been strongly driven by the argument that objects do communicate
through synchronous method invocations which force the interacting parties
to be bothcoupled in time and in space.

The argumentation is influenced by the current commercial practices in
distributed object-oriented computing, which are mainly based on
synchronous remote method invocations. As we convey in this chapter
however, decoupling producers and consumers can be made very practical in
an object-oriented setting.

www.manaraa.com

LOOSELY COUPLED COMPONENTS 203

DACs: marrying object-orientation and message-oriented
middleware. We have been considering an alternative approach where the
programmer would be very aware of distribution but where the ugly and
complicated aspects of distribution would be encapsulated inside specific
abstractions with a well-defined interface. This chapter presents a candidate
for such an abstraction: The Distributed Asynchronous Collection. It is a
simple extension of the well-known collection abstraction. DACs add an
asynchronous and distributed flavor to traditional collections [18], and
enable to express various forms of message-oriented interaction. In fact,
most systems we know about are unwieldy and consider only a limited set of
interaction models. DACs are lightweight publish/subscribe abstractions:
they can be introduced through a library approach and they express the
different message-oriented interaction styles. We are currently integrating
new flavors into our framework, for instance through content-based filters,
which offer a more fine-grained subscription scheme based on properties of
message objects.

We believe that our object-oriented view of messaging is a unique
compromise between transparency and efficiency. By offering a modular
design aligned with different communication semantics, we enforce ease of
use without missing performance related issues. We are currently making
use ofDACs in various practical examples, which are far more complex than
the simple chat example presented in this chapter. The objective of investing
in several applications is to end up with a stable framework that would for
instance extend JGL [17]. The issue of translating operations known from
conventional collections to an asynchronous distributed context is however
not entirely completed, and certain parts of the API might be affected by
future modifications. We also explore specific algorithms to realize efficient
matching, especially focusing on the tradeoffs of dynamic and static filter
approaches. Finally, we are also focusing on efficient distributed
implementations of pull-style queues, especially in combination with a
hierarchical deployment.

11. REFERENCES

1. B. Oki and M. Pfluegl and A. Siegel and D. Skeen. The Information Bus - An
Architecture for Extensible Distributed Systems. In 14th ACM Symposium on Operating
System Principles, pp. 58-68, 1993.

2. D. Powell (editor). Group Communications In Communications of the ACM, 39(4), pp.
50-97, 1996.

3. Talarian Corporation. Everything You need to know about Middleware: Mission-Critical
Interprocess Communication (White Paper). http://www.talarian.com. 1999.

4. TIBCO Inc. http://www.rv.tibco.com/whitepaper.html. 1999.

www.manaraa.com

204 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

5. D. Skeen. Vitria's Publish-Subscribe Architecture: Publish-Subscribe Overview.
http://www.vitria.com. 1999

6. M. Altherr and M. Erzberger and S. Maffeis. iBus - A Software Bus Middleware for the
Java Platform. In Int. Workshop on Reliable Middleware Systems, pp. 43-53, 1999.

7. B. Blakeley and H. Harris and J.R.T. Lewis. Messaging and Queuing Using the MQI:
Concepts and Analysis, Design and Development McGraw-Hill, 1995.

8. Digital Equipment Corporation. DECMessageQ: Introduction to Message Queuing, 1994
9. BEA Systems Inc. Reliable Queuing Using BEA Tuxedo: White Paper.

http://www.beasys.comlproducts/tuxedo/. 2000.
10. Microsoft Corporation. Microsoft Message Queuing Services, 1997.
11. D. Schmidt and S. Vinoski. Overcoming Drawbacks in the OMG Event Service. In SIGS

C++ Report magazine, 1997.
12. E. Gamma and R. Helm and R. Johnson and J. Vlissides. Design Patterns, Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
13. M. Hauswirth and M. Jazayeri. A Component and Communication Model for Push

Systems. In ESECIFSE 99 - Joint 7th European Software Engineering Conference
(ESEC) and, 1999.

14. KP. Birman. The Process Group Approach to Reliable Distributed Computing. In
Communications of the ACM, 36(12), pp. 36-53,1993.

15. D. Gelernter. Generative Communication in Linda. In Transactions on Programming
Languages and Systems (TOPLAS), ACM, 7(1), pp. 80-112, 1985.

16. OMG. COREA services: Common Object Services Specification. OMG, 1998
17. ObjectSpace. JGL-Generic Collection Library.

http://www.objectspace.comlproducts/jgll. 1999.
18. lP. Briot and R. Guerraoui and KP. Lohr. Concurrency, Distribution and Parallelism in

Object-Oriented Programming. In ACM Computing Surveys, 30(2), pp. 291-329, 1998.
19. A. Yonezawa and E. Shibayama and T. Takada and Y. Honda. Modeling and

Programming in an Object-Oriented Concurrent Language ABCLIi. In Object-Oriented
Concurrent Programming, pp. 55-89, MIT Press, 1993.

20. D. Caromel. Towards a Method of Object-Oriented Concurrent Programming. In
Communications of the ACM, 36, pp. 90-102, 1993.

21. M. Happner and R. Burridge and R. Sharma. Java Message Service. Sun Microsystems
Inc., 1998.

22. OMG. Notification Service - Joint revised submission. OMG, 1998.
23. K Arnold and B. O'Sullivan and R.W. Scheifler and 1 Waldo and 1 Wollrath. The Jini

Specification. Addison-Wesley, 1999.
24. T. Harrison and D. Levine and D.C. Schmidt. The Design and Performance of a Real­

Time COREA Event Service. In 12th ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA'97), pp. 184-200, 1997.

25. E. Freeman and S. Hupfer and K. Arnold. JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley, 1999.

26. IBM. MQSeries: Using Java. IBM, 2000.
27. P. Th. Eugster and R. Guerraoui and 1 Sventek. Type-Based Publish/Subscribe.

Technical Report 2000-029, Communication Systems Department, Swiss Federal
Institute of technology, 2000.

28. J. Waldo, G. Wyant and A. Wollrath and S. Kendall. A Note on Distributed Computing.
Sun Microsystems Inc., 1994.

29. D. Lea. Design for open systems in Java. In 2nd International Conference on
Coordination Models and Languages, 1997.

www.manaraa.com

LOOSELY COUPLED COMPONENTS 205

30. R. Guerraoui. What object-oriented distributed programming does not have to be and
what it may be. In Informatik, 2, 1999.

31. Microsoft Co. DCOM Technical Overview (White Paper). Microsoft Co., 1999.
32. Sun Microsystems Inc. Java Remote Method Invocation - Distributed Computing for

Java (White Paper). Sun Microsystems Inc., 1999.
33. OMG. The Common Object Request Broker: Architecture and Specification. OMG,

1999.
34. P. Koenig. Messages vs. Objects for Application Integration. In Distributed Computing,

2(3), pp. 44-45, 1999.
35. E. Jul and H. Levy and N. Hutchinson and A. Black. Fine-grained mobility in the

Emerald System. In ACM Transactions on Computer Systems, 6(1), pp. 109-133, 1998.
36. 1. Waldo and G. Wyant and A. Wollrath and S. Kendall. Events in an RPC Based

Distributed System. Sun Microsystems Laboratories Inc., 1995.
37. D. Rosenblum and A. Wolf. A Design Frameworkfor Internet-Scale Event Observation

and Notification. In 6th European Software Engineering Conference/ACM SIGSOFT 5th

Symposium on the Foundations of Software Engineering, 1997.
38. Sun Microsystems Inc. The Java Platform 1.2 API Specification. Sun Microsystems Inc.

http://java.sun.com/products/jdk/l.2/, 1999.

www.manaraa.com

Chapter 7

CO-EVOLUTION OF OBJECT-ORIENTED
SOFTWARE DESIGN AND IMPLEMENTATION

Theo D'Hondt, Kris De VoIder, Kim Mens and Roel WUyts
Programming Technology Lab, Department o/Computer Science, Vrije Universiteit Brussel,
Pleinlaan 2, B-1050, Brussels, Belgium. E-mail: (tjdhondt, kdvolder, kimmens,
rwuyts }@vub.ac.be, www: http://prog. vub. ac. be

Key words: Software architectures, meta-programming, logic programming.

Abstract: Modem-day software development shows a number of feedback loops
between various phases in its life cycle; object-oriented software is particularly
prone to this. Whereas descending through the different levels of abstraction is
relatively straightforward and well supported by methods and tools, the
synthesis of design information from an evolving implementation is far from
obvious. This is why in many instances, analysis and design is used to initiate
software development while evolution is directly applied to the
implementation. Keeping design information synchronized is often reduced to
a token activity, the first to be sacrificed in the face of time constraints. In this
light, architectural styles are particularly difficult to enforce, since they can, by
their very nature, be seen to crosscut an implementation. This contribution
reports on a number of experiments to use logic meta-programming (LMP) to
augment an implementation with enforceable design concerns, including
architectural concerns. LMP is an instance of hybrid language symbiosis,
merging a declarative (logic) meta-level language with a standard object­
oriented base language. This approach can be used to codify design
information as constraints or even as a process for code generation. LMP is an
emerging technique, not yet quite out of the lab. However, it has already been
shown to be very expressive: it incorporates mechanisms such as pre/post
conditions and aspect-oriented programming. We found the promise held by
LMP extremely attractive, hence this chapter.

www.manaraa.com

208 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

1. INTRODUCTION

Recent times have seen a consolidation of methods and tools for software
development in production environments. A good number of de facto
standard tools have emerged, not the least of which is the Unified Modeling
Language in some commercial incarnation. At last, one could say, we have
come to know the process by which the design and implementation of a
complex piece of software is charted. Objects have been widely accepted;
the programming language babel seems more and more controlled by the
emergence of Java and previously untamed regions of information
technology, such as distribution, co-ordination and persistence, are starting
to become daily fare in software applications.

So why is software development still arguably the least predictable of
industrial processes? Why can comparable software projects, executed by
development teams with comparable skills, not be planned with comparable
margins of error? Why is our appreciation of the software development
process still flawed, even after the introduction of all these new techniques
and tools?

For some time now, grounding the development of software in a
programming language has proved not to be scalable. This led to the notion
of software architectures as a collection of techniques to buttress this
development process, particularly in those places where programming
languages or tools fail to capture the macroscopic structure of the system
that needs to be built. Close to the programming language technology itself,
we find the well-understood framework approach; at a more abstract level
we find techniques built on various kinds of patterns and contracts.

The latest landslide in this fight for control over software complexity is
the emergence of component technology. At a time when commercial
component toolkits such as Enterprise Java Beans are proposed as the
solution to our problems, we do well in realizing that the advent of
components amounts to an acknowledgement of defeat. In fact, by accepting
this technique of decomposition into static components, we have come full
circle and reinvented data abstraction. The task of making components co­
operate is not any better understood than any of the numerous software
building strategies we have taken under consideration these past 20 years.

An important step in understanding this partial failure is the insight that
software is fluid. It is in constant evolution under the influence of ever
changing conditions; software development is sandwiched between a
technology that is evolving at breakneck speed, and requirements that must
follow the economic vagaries of modem society. In this, the commercial
product called software is unique; the closest professional activity to that of
software developer is that of composer in 18th century Europe. At that time,

www.manaraa.com

CO-EVOLUTION OF 0. 0. SOFTWARE DESIGN AND IMPLEMENTATION 209

relatively widespread knowledge of harmony or counterpoint made for the
necessary skills to use and reuse fragments of sophisticated musical
artefacts. For instance, [8] offers insight on how invention, a term borrowed
from rhetoric, drives composition according to a process which bears a
striking resemblance to building complex computer applications.
Unfortunately, equivalent skills needed to master a software artefact are
today in far more limited supply than 250 years ago.

This contribution is a synthesis of recent work performed by various
people within our lab in addressing this need for more control over the
evolution of software. Although in the past, a significant amount of work
focussed on the need to document evolution and build conflict detection tools
[1, 14], to recover architectural information from implementations [6] and to
formalize the evolution process [13], we will concentrate here on an
emerging approach for steering evolution. This is very recent work and as
such has only resulted in experiments and prototypes. We feel however that
it is sufficiently mature and promising to be presented here as a whole. In the
bibliography we limit ourselves to a number of key documents l describing
these activities; these in turn contain a much more comprehensive list of
references.

We have chosen to use the term co-evolution, implying that managing
evolution requires the synchronization between different layers (or views) in
the software development process. We will therefore dedicate the next
section to an analysis of this statement. Next, we propose a concept called
Logic Meta Programming (or LMP for short) as a development framework
in which to express and enforce this synchronization process. Another
section of this chapter will be used to introduce LMP and to situate it in the
broader context of software development support. Finally, several
experiments with LMP will be presented in evidence of its applicability. We
will discuss using LMP as a medium for supporting aspect oriented
programming, for enforcing architectural concerns in an object oriented
programming environment and to express constraints on the protocol
between a collection of interacting software components. This is by no
means a complete coverage of LMP, nor even of the experiments conducted
at our lab; we feel however, that it provides sufficient insight in the
applicability of LMP to the co-evolution of software, while avoiding
exposing the reader to too much detail.

1 Available via http://prog.vub.ac.be

www.manaraa.com

210 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

2. SYNCHRONIZING DESIGN AND
IMPLEMENTATION

Currently accepted procedures in the development of software involve
adopting several views. In descending order of abstraction one encounters
requirements capture, analysis, design, implementation, documentation and
maintenance. Not quite by accident, this also happens to constitute an
ordering according to increasing level of detail, albeit not a continuous one.
There is in fact a kind of watershed between design and implementation,
which commits the developer to a level of detail that is very hard to reverse.

Consider an example describing a simple management hierarchy. At best
this is captured at the class diagram level by an arity constraint, although the
more subtle aspects such as the required absence of cycles in the hierarchy
graph can only be expressed by an informal annotation:

Manager 1

OperationO

OperationO

Figure I: A manager/employee hierarchy

It can be seen that as we transit from the original requirements to the design,
we replace abstract concepts by more concrete ones. The same holds for the
implementation: in our simple example the arity constraint might be replaced
by a precondition in a mutator function while the acyclicity constraint, if
implemented at all, gives rise to some consistency maintenance code. On the
other hand, we see that this decrease of abstraction is compensated by an
increase in the level and amount of detail.

This observation holds in general and will be viewed as trivial by most
software developers. However, we do well in analyzing this transition from
abstraction to detail as we descend through the various levels in the lifecycle
of a software application. Typically, the amount of energy that needs to be
applied increases with the level of detail; so does the need for technical
skills. This generally makes an implementation artefact more valuable than a

www.manaraa.com

CO-EVOLUTION OF 0. 0. SOFTWARE DESIGN AND IMPLEMENTATION 211

design artefact. Also, any ultimate defect in respecting the original
requirements is detected at the lowest level, i.e. the implementation.

Initially, the development of a software application is achieved by this
progression through the various abstractions: requirements, analysis, design
and implementation. However, once the implementation has reached the
production stage, the tangible aspects of the prior stages are at best used as
documentation in order to boost understanding of the actual code; at worst
they become obsolete. This is a well-known phenomenon: under the pressure
to bring software to market in the face of competition, or to correct flaws
under the threat of contractual penalties, the management of evolving
software all too often degenerates into updating implementations. Various
directions have been explored to improve this situation: in general they
imply some re- engineering activity applied to evolving implementations in
order to extract abstractions and update e.g. design documentation. Hardly
anyone uses an approach where design concerns drive the implementation
process; programming environments that explicitly constrain the developer
to design decisions are hard to find. Popular languages like Java evolve, but
they evolve towards a more sophisticated type system: boosting genericity is
a technical issue and hardly qualifies as support for e.g. architectural
concerns.

It is our conjecture that during the development process, the
concretization of abstract concerns should not consist of some kind of
erosion. On the contrary, any relevant feature should be kept available in any
of the ulterior phases. We will in particular concentrate on the
synchronization between design and implementation. For the sake of this
discussion we will discard requirements that cannot be expressed as explicit
design directives. Our ambition is to augment an implementation such that it
becomes a strict superset of its design; design can be extracted from an
implementation by ignoring details; design can be interpreted by the
programming environment and therefore enforced. We propose an approach
called Logic Meta Programming, (or LMP for short) which will be described
in the now following section.

Consider as an example a change in the manager/employee example
where a decision to introduce workforce pooling results in the arity
constraint to be changed into:

www.manaraa.com

212 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Manager

I..n
OperationO

Figure 2: A manager/employee hierarchy with workforce pooling

The program code will probably need to be changed significantly with
hardly an explicit link to the original arity constraint. We would prefer it to
be explicitly present in the implementation as some kind of enforceable
declaration, formatted in the proposed LMP-paradigm.

3. LOGIC META PROGRAMMING

Logic Meta Programming, or LMP for short, is the name we use for a
particular flavor of multi-paradigm programming. The starting point for
LMP is an existing programming environment that is particularly suited for
engineering large software systems. In this contribution, we have limited
ourselves· to a Java-based environment and to a Smalltalk-based
environment. Next, we augment this environment by a declarative meta layer
of a very particular nature. In the case of Java, i.e. a statically typed
language, this meta layer might be implemented as a pre-processor or even
an extension of the Java compiler itself. In the case of Smalltalk, it requires
the addition of a number of classes to the standard Smalltalk hierarchy. We
are interested in a declarative approach; it seems intuitively clear that design
information, and in particular architectural concerns, are best expressed as
constraints or rules. Logic programming has long been identified as very
suited to meta programming and language processing in general; see [4] for
related publications.

The acyclicity constraint from the manager-employee example on the
previous page seems to indicate2 the need for unification as an enforcement

2 Imagine for instance a tool to enumerate al cyclic calling graphs.

www.manaraa.com

CO-EVOLUTION OF 0. 0. SOFTWARE DESIGN AND IMPLEMENTATION 213

strategy. Anyway, we would like as much power on our side as possible, at
least initially. We are not concerned with performance issues at this stage;
neither do we intend to explore all avenues of declarative programming. For
historical reasons, we concentrate on a Prolog-derivative for our logic meta
language; its power and its capacity to support multi-way queries seem
particularly attractive at this point. Finally, we make the symbiosis between
the two paradigms explicit by allowing base-level programs to be expressed
as terms, facts or rules in the meta-level; we will refer to this as a
representational mapping.

Consider the simple Java class in figure 3: it implements an array of
integers. Following it in figure 4 the original class has been embedded in a
meta-declaration using a representational mapping. The notation is fairly
crude and to clarify it somewhat elements from the meta-program have been
highlighted. Notice that the original element type was replaced by a logic
variable.

class Array {
private int[] contents;
Array(int sz) {
contents = new int[sz];
}
int getAt(int i) {
return contents[i];
}
void setAt(int if int e) {
contents[i] = e;
}

}

Figure 3: A Java array

This is an example of using LMP for code-generation; it was explored in
[7] under the exotic name TyRuBa. A proper query substituting int for ?El
in figure 4 would produce figure 3. Actually, figure 4 is a simple example of
how LMP can be used to introduce parametric types.

www.manaraa.com

214 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Class{Array<?El>L {
private ?El[] contents;
Array<?El>(int sz) {
contents = new ?El[sz];
}
?El getAt(int i) {
return contents[i];
}
void setAt (int i, ?El e) {
contents[i] = e;
}

}l

Figure 4: A generic Java array

A totally different way to view LMP is introduced in [12] as the
Smalltalk Open Unification Language (SOUL). This approach actually
applies constraints specified at the meta level to the base level program. The
representational mapping is based on the presence of predicates that give
access to syntactic elements belonging to the base level.

Rule transitive(?cl,?c2,?tried) if
member (uses (?cl, ?c2) , ?tried), !.

Rule transitive(?cl,?c2,?tried) if
uses(?cl,?c2), !.

Rule transitive(?cl,?c2,?tried) if
uses(?cl,?c3) ,

transi ti ve (?c3, ?c2, <uses (?cl, ?c3) I ?tried» .
Rule cyclic(?c) if

transitive (?c, ?c, <» .
Rule uses(?cl,?c2) if

class(?cl) ,
method (?cl, ?m) ,
calls(?m,c3) .

Figure 5: A circularity test

In the above example we assume the availability of predicates class,
method and calls to access the structure of a base program. The cyclic
rule verifies whether there is a transitive calling relationship from a class to

www.manaraa.com

CO-EVOLUTION OF 0. 0. SOFTWARE DESIGN AND IMPLEMENTATION 215

itself. This rule in tum could be used to enforce the acyclicity constraint
from the manager-employee example.

4. LMP AND ASPECT ORIENTED PROGRAMMING

In [7] an LMP framework is proposed that supports sophisticated type
systems for statically typed programming languages such as Java. This
framework, called TyRuBa, turns a type system into a computationally
complete environment and allows a programmer to specify the static
structure of a program as a set of logical propositions. In one of the next
sections we will report on an experiment to use TyRuBa as a system to
describe software architectures with. In this section we will build on the
relationship between LMP and Aspect Oriented Programming (or AOP for
short). We refer to [4] for an extended bibliography; suffice it to say that
AOP is concerned with the production of software as a result of a weaving
process. The weaver is an AOP-related tool that is capable of merging
aspects of a software application, each of them described in a specific aspect
language.

In [4] it is proposed that LMP may well function as an aspect-oriented
programming environment. As evidence for this, a well-known case for AOP
(synchronization of co-operating processes using an aspect language called
COOL) is expressed in TyRyBa. An important conclusion drawn from this
experiment is the fact that a general-purpose framework, in casu LMP, can
be used to host aspect programs; hitherto, aspect languages were specific to
the aspect under consideration.

In deference to the subject of this contribution, we will not concentrate
on technical applications of AOP; instead we will consider an interesting
application of AOP involving design as much as implementation. In [3] the
idea is launched that domain knowledge might well constitute an aspect in
the AOP sense. Separating some problem into its domain aspect and its
implementation aspect by describing them in a!some aspect language and
then producing a piece of software by applying a weaver seems a very
attractive approach.

Moreover, it seems to fit very well with the concept of software co-evolution
introduced earlier on.

www.manaraa.com

216 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY

Keerbergen

~~~~ 
9 

Boortmeerbeek 

Figure 6: A shortest path problem 

Figure 6 represents the test case proposed in [3] to explore this idea. The 
example is taken from a GIS-application, involving a mix of a conventional 
algorithm to compute a shortest path, and the specifics of the domain, which 
allow us to improve the basic algorithm. 

branchAndBoundFrom: start to: stop 

I bound I 
bound := 999999999. 
self traverseBlock: 

[ : node : sum I 
node free if True: 

[sum < bound if True: 

[node = stop if True: 

[bound := suml if False: 
[self branch: node sum: sumllll. 

self traverseBlock value: start value: O. 
I\bound 

Figure 7: The branch-and-bound program 

In order to keep things as simple as possible, we consider an elementary 
branch-and-bound strategy. In figure 7 this is implemented using an 
auxiliary branch: method in order to fix the sequence in which branches 
are selected. 



www.manaraa.com

CO-EVOLUTION OF 0. 0. SOFTWARE DESIGN AND IMPLEMENTATION 217 

branch: node sum: sum 
node free: false. 
node ledgesl do: 

[:edge I self traverseBlock 
value: edge next 
value: sum + edge distance] . 

node free: true 

Figure 8: Fixing the selection order 

Figure 8 contains a possible implementation for branch: and it contains 
an enumeration of all possible edges leaving a node. However, the message 
edges is no longer resolved by the base program, but by a query in the logic 
meta program containing the knowledge about this particular domain. 

Fact city (Rijmenam) 
Fact city (Boortmeerbeek) 
Fact road(city(Rijmenam) ,city(Boortmeerbeek), [3]) 
Fact road (city (Keerbergen) , city (Rijmenam) , [4]) 

Fact prohibitedManoeuvre(city(Rijmenam), 
city(Bonheiden)) 

Rule roads (?current,?newResult)if 
findall(road(?current,?next,?distance) , 
road (?current, ?next, ?distance) ,?result) 
privateRoads(?current,?result,?newResult) 

Rule privateRoads(?current,?result,?newResult)if 
prohibitedManoeuvre(?current,?next) , 
removeRoad(?result road(?current,?next, 

?distance) ,?newResult) 
Fact privateRoads(?current,?result,?result) 

Figure 9: The domain knowledge 

The particular flavor of LMP we use here is the Smalltalk Open 
Unification Language mentioned earlier on. The rule needed to compute the 
edges of a node would look something like this: 

Rule edges (?node, ?result) if 
equals (?name, [?node name]), 
roads (city(?name) , ?result). 



www.manaraa.com

218 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

In [4] an explanation is given of how the base program and the meta 
program communicate. The basic idea is to effect a kind of linguistic 
symbiosis (see e.g. [11]) based on a two-way reification of language entities; 
in the case of SOUL this amounts to wrapping Smalltalk objects inside 
Prolog facts and vice versa. For example, the code [?node name] in the 
edges rule is reified Smalltalk code sending a unary message name to 
retrieve the name from the node currently associated with the variable; it 
returns a string representing the name. A number of technical issues need to 
be resolved still; in particular SOUL would seem to lack in reflective power 
and needs to be extended with a number of reification operators. Also, the 
proposed test case would seem to border on the triviaL On the other hand, it 
shows that there is at least a lower bound to a category of problems that can 
be non-trivially decomposed into a domain part and an implementation part 
using AOP. An interesting research topic concerns the charting of this 
category and the development of tangible procedures to perform the related 
decomposition. The proposed LMP approach seems at the very least 
attractive enough to function as a vehicle forthis research. 

5. LMP AND SOFTWARE ARCHITECTURES 

Software architectures are concerned with the abstract structure of some 
software application in terms of building blocks, and the interaction between 
them. Starting from this fairly broad statement, a number of more specific -
and sometimes competing-definitions have been proposed. In [6] it is 
suggested that software building blocks need not be explicitly linked but 
may equally well be classified. Classification in its simplest form implies 
that all software entities are tagged; together with the possibility to nest 
classifications, this results in a very interesting view on architecture; its 
simplicity belies the power and expressiveness that was demonstrated in [6]. 

In [10] LMP is explored as a framework in which to express software 
architectures using this classification approach. In particular, virtual 
classifications are proposed, i.e. classification is not limited to simple 
tagging, but allows every software entity to be associated with a 
computational classifier. This could e.g. be a logical predicate that is 
evaluated every time a query is launched, its behavior depending on values 
submitted by the query. 



www.manaraa.com

CO-EVOLUTION OF 0. 0. SOFTWARE DESIGN AND IMPLEMENTATION 219 

SOUL is proposed as both the target as the medium for this study: it is used 
as a kind of architectural description language and it is applied to the 
architecture of SOUL itself. 

knowledge 
base 

Figure 10: The SOUL rule base architecture 

The kernel of SOUL is a logic query interpreter with the above 
architecture. This architecture is representative for rule bases in general; 
moreover it is sufficiently challenging to be used as a case study. 

This architecture is obtained by means of classification. SOUL being 
implemented in Smalltalk, methods and classes are considered as building 
blocks, and classification is initially limited to a uses and creates 
relationship betWeen these entities. For instance, the working memory is 
simple to define: it contains all classes that derive form a root class that 
specifies the generic structure of variable-value bindings. A more 
challenging example from [I 0] is the rule that specifies how methods are 
classified as belonging to the query interpreter: 

Rule methodIsClassifiedAs(?Method,queryInterpreter) if 
classImplements([SOULQuery] I 

[#interpret:repository:] ,?M) I 

reaches (?M,?Method) . 

Bracketed terms are wrapped Smalltalk identifiers: SOULQuery is the class 
containing the interpret: repository: method that launches 
interpretation. The predicate reaches is similar to transi ti ve in figure 5; 
it verifies that ?Method belongs to the transitive closure of?M . 

This classification crosscuts the static structure of the SOUL 
implementation and could not have been obtained through a simple 
hierarchical approach. It illustrates the true power of a computationally 



www.manaraa.com

220 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

complete language in which to express an architecture in terms of 
classification. 

In [10] LMP is also used to express the connectors in figure 9 between 
the components defined by the various classifications. In fact, the uses and 
creates relationships are combined with universal and existential cardinality 
constraints to define a limited family of connectors; this results in a 
specification of the architecture of figure 10 as a ten-line SOUL fact. A 
definition for the uses and creates relationships for each of the kinds of 
implementation artefacts allows this fact to be used to perform conformance 
checking of any SOUL implementation. 

This section described a second interesting experiment in using LMP to link 
the implementation of a software artefact to its design. Although the test case 
is small-scale and the sophistication of the connectors is limited, the results 
are promising. [10] claim that it is possible to use this approach to define or 
even extract architectural patterns, which certainly illustrates the power of 
the proposed formalism. On the downside, performance is an issue requiring 
a lot of attention to make the LMP approach to software architectures a truly 
scalable one. 

6. LMP AND SOFTWARE COMPONENTS 

Software components and software architectures are notions that are 
strongly linked. However, this section is fundamentally different from the 
previous one. Weare no longer interested in the declaration and enforcement 
of architectural rules and conventions, but in a composer environment. In 
this section we are much more tool-minded, and we want to investigate how 
LMP can help us drive the process of assembling components. This is of 
course a major concern for everyone involved in software architectures; 
again we refer to [9, 10] for a more comprehensive bibliography. 

In [9] an experimental generic builder tool is described and applied to the 
popular Java Beans component model. Its architecture is as follows: 



www.manaraa.com

CO-EVOLUTION OF 0. 0. SOFTWARE DESIGN AND IMPLEMENTATION 221 

Figure 11: Component builder architecture 

The builder tool is supposed to guide a user in establishing a description 
of the application, and consequently generate the Java Beans application 
code. In order to do so, the tool must have access to a repository of 
descriptions of the various elements that constitute our component model. 

The TyRuBa approach from [7] to LMP is used to establish a set of facts 
and rules to define notions about parts and containers, and how to link them 
using connectors. Using these, the description of the application becomes a 
meta-program similar to figure 4. 

The component builder architecture provides the mechanism for 
describing components. A Java Bean for instance, is defined in terms of its 
properties, public methods and events. A set of facts allow the specification 
for accessor/mutator methods (in the case of properties), public methods and 
listener methods (in the case of events). To get a feeling for the way these 
are formatted, we include an example from [9] that specifies the registration 
of an event listener: 

Featurel(OurButton, 
method<void,add<Action<Listener», 
[Action<Listener>]» . 

The expressions bracketed by < > are compound terms and are used to 
support the representational mapping of Java in TyRuBa. 

Next, it is necessary to describe containers; a container is a composite 
application (e.g. an applet) and it contains (generates) code to initialize the 
parts. A part is a description of how a component is used inside a container 
and it contains the specifics of the initialization code. The configuration 
specifies how the writeable properties of parts belonging to a container are 
set. The connection protocols specify how the parts inside a container 
interact. We refer to [9] for an extended example of the proposed component 



www.manaraa.com

222 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

model architecture using TyRuBa; it would take up too much space to do so 
here. 

The major contribution of [9] is the proof (by construction) that it is 
possible to separate a builder tool from a component model. It is yet another 
illustration of the fact that LMP can actively assist in expressing abstract and 
concrete aspects of a software application within the same framework. 
Although the proposed builder hardly qualifies as more than a prototype, it 
indicates an interesting avenue of research. In the spirit of Smalltalk's Model 
View Controller, sophisticated interactive tools can be seen to be separable 
in independent sections. However, contrary to MVC, a relatively simple 
framework approach is hardly ever sufficient and more sophisticated 
techniques are called for. It would seem that using LMP gives at least a 
partial reply to this concern. 

70 CONCLUSION 

This contribution is a first synthesis of work that has been going on in our 
lab these past couple of years related to declarative meta level programming. 
In particular, it covers several endeavors to marry a logic meta-program to a 
base program developed in a standard object-oriented programming 
language. In all cases the major concern was to effect a linguistic symbiosis 
in order to have the base program query the meta level to resolve issues at an 
abstract level, and to have the meta program access the structure of the base 
program. 

This synthesis constitutes a push towards research in managing the co­
evolution of design and implementation of software applications. We 
advocate the need to express design as closely integrated with the 
implementation and we propose logic meta programming as a possible way 
to effect a bi-directionallink between the two. Our conjecture is that design 
becomes verifiable and possibly enforceable if it is properly expressed as a 
logic meta program. We explicitly address cases where software is subject to 
evolution, and where synchronization between design and implementation is 
an issue. Weare not only interested in the impact of a design change on the 
derived implementation; we are expressly concerned with the (unfortunately 
realistic) situation where an implementation is updated and the design needs 
to be brought in line with these changes. 

Given the proper framework, a logic meta program expressing some 
design can assist a programming environment in constraining a programmer 
to abstract design rules that are visible at the level of the programming 
language only in terms of their constituent implementation details. An 



www.manaraa.com

CO-EVOLUTION OF 0. 0. SOFTWARE DESIGN AND IMPLEMENTATION 223 

inkling that this might be feasible is given by the prototype Java Beans 
application builder. 

Logic meta programming can also assist in separating the development of 
a software application into domain concerns and implementation concerns. 
Given that evolution of software at the implementation level is often inspired 
by implementation issues, this uncoupling of concerns might significantly 
and positively impact the proposed process of co-evolution. As was 
illustrated earlier on, the capacity of logic meta programming to express 
different aspect programs in one unifYing framework seems far too attractive 
to ignore. 

Possibly the most interesting direction described in this contribution is 
the management of co-evolution through virtual classifications. Logic meta 
programming seems extremely well suited to the annotation of object­
oriented software with queries that are automatically triggered when some 
element is changed; depending on the content of the rule base, these queries 
can ensure the synchronization between the various abstraction layers. 
Experiments with a simple tagging strategy have shown significant promise; 
opening up this strategy to query-based classification should give us the key 
to controlling the level of detail that co-evolution should respect. 

There are of course a number of unresolved issues; this is after all a 
research topic barely out of the bud. A major concern is one of efficiency and 
performance. It would seem that depending on the degree of support offered 
by the proposed approach, various flavors of declarative meta programming 
with various performance ratings should be considered. Obviously, the vast 
field of research in declarative languages can function as an inspiration. 
Next, other levels in the lifecycle of software should be considered. In 
particular, expressing requirements (particularly the non-functional ones) in 
an LMP framework could prove to be a fascinating and rewarding research 
topic. 

Finally, there is an enormous need to validate these ideas in a production 
setting. Although this has been initiated on a limited scale, many more 
experiments are needed. On the other hand, there is an even greater need for 
comprehensive software lifecycle management methods and tools. Steering 
co-evolution between design and implementation using logic meta 
programming seems to be an interesting step in this direction. 

8. REFERENCES 

1. C. Lucas. Documenting Reuse and Evolution with Reuse Contracts. PhD dissertation, 
Vrije Universiteit Brussel, 1997. 



www.manaraa.com

224 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

2. M. D'Hondt and T. D'Hondt. Is domain knowledge an aspect? Proceedings of the 
ECOOP99 Aspect Oriented Programming Workshop, 1999. 

3. M. D'Hondt, W. De Meuter, and R. Wuyts. Using Reflective Programming to Describe 
Domain Knowledge as an Aspect. Proceedings ofGCSE'99, 1999. 

4. K. De VoIder, and T. D'Hondt. Aspect-Oriented Logic Meta Programming. Proceedings 
of Reflection '99, 1999. 

5. 1. Brichau. Syntactic Abstractions for Logic Meta Programs, or vice-versa. Draft 
publication, 1999. 

6. K. De Hondt. A Novel Approach to Architectural Recovery in Evolving Object-Oriented 
Systems. PhD dissertation, Vrije Universiteit Brussel, 1998. 

7. K. De VoIder. Type-Oriented Logic Meta Programming. PhD dissertation, Vrije 
Universiteit Brussel, 1998. 

8. L. Dreyfus. Bach and the Patterns of Invention. Harvard University Press, 1996. 
9. M. 1. Presso. Generic Component Architecture Using Meta-Level Protocol Descriptions. 

Master's dissertation, Vrije Universiteit Brussel, 1999. 
10. K. Mens, R. Wuyts and T. D'Hondt. Declaratively Codifying Software Architectures 

Using Virtual Software Classifications. Proceeding of TOOLS Europe'99, 1999. 
11. P. Steyaert. Open Design of Object-Oriented Languages, a Foundation for Specialisable 

Reflective Language Frameworks. PhD dissertation, Vrije Universiteit Brussel, 1994. 
12. R. Wuyts. Declarative reasoning about the structure of object-oriented systems. 

Proceedings ofTOOLS'98 USA, 1998. 
13. T. Mens. A Formal Foundation for Object-Oriented Evolution. PhD dissertation, Vrije 

Universiteit Brussel, 1999. 
14. P. Steyaert, C. Lucas, K. Mens and T. D'Hondt. Reuse Contracts: Managing the 

Evolution of Reusable Assets. Proceedings of OOPSLA, ACM SIGPLAN Notices 
number 31(10), pp. 268-285,1996. 



www.manaraa.com

Chapter 8 

DERIVING DESIGN ALTERNATIVES BASED ON 
QUALITY FACTORS 

Mehmet Ak~it and Bedir Tekinerdogan 
TRESE Group, Department of Computer Science, University ofTwente, postbox 217, 
7500 AE, Enschede, The Netherlands. email: {aksit.bedir}@cs.utwente.nl. 
www: http://trese.cs.utwente.nl 

Keywords: modeling design spaces, design alternatives, balancing quality factors 

Abstract: Software is rarely designed for ultimate adaptability or performance but rather 
it is a compromise of multiple considerations. At almost every stage of the 
software development lifecycle, software engineers have to cope with various 
design alternatives. Current object-oriented design practices, however, rely 
mainly on the intrinsic quality factors of the object-oriented abstractions rather 
than considering quality factors as explicit design concerns. It is considered 
important to support software engineers in identifying, comparing and 
selecting the alternatives using quality factors such as adaptability and 
performance. This chapter introduces a new technique to depict, compare and 
select among the design alternatives, based on their adaptability and time 
performance factors. This technique is formally specified and implemented by 
a number of tools. 

1. INTRODUCTION 

Software development methods [6][ 13] provide a set of heuristic rules to 
guide software engineers to analyze, design and implement software 
systems. Although heuristic rules can be quite helpful in developing high 
quality software systems, it is generally difficult for software engineers to 
identify, compare and prioritize the design alternatives. 

Software is rarely designed for ultimate adaptability or performance but 
rather it is a compromise of multiple considerations. At almost every stage of 



www.manaraa.com

226 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

the software development lifecycle, software engineers have to cope with 
various design alternatives. Of course while defining object models, software 
engineers apply their knowledge and experience. They generally compare 
the alternatives based on their intuition. This process, however, is rather 
implicit instead of explicit. 

This chapter introduces a new technique called Design Algebra to depict, 
compare and select the alternatives of a design, based on the adaptability and 
time performance factors. The software engineer can identify the alternatives 
at various phases of the development process, and make explicit decisions. 
This technique is formally specified and implemented by a set of tools. 

This chapter is organized as follows. The next section introduces an 
example and explains the problems addressed in this chapter. Section 3 
presents a process for selecting the design alternatives based on the 
adaptability factors. Section 4 shows techniques to determine the 
probabilistic time performance factors of the design alternatives. Balancing 
the adaptability and performance factors is explained in section 5. The 
related work is presented in section 6. Section 7 discusses the usefulness of 
the proposed approach. Finally, section 8 gives conclusions. 

2. THE PROBLEM STATEMENT 

We will use a simple working example throughout the chapter. Section 
2.1 presents the example, and section 2.2 explains the problems addressed in 
this chapter using this example. 

2.1 An Illustrative Example: Collection Classes 

Assume that we would like to design a set of collection classes, such as 
LinkedList, OrderedCollection and Array to be a part of an object-oriented 
library. These classes should provide the necessary operations to read and 
write the elements stored in collection objects. Further, we would like to 
define a sorting algorithm to order the items stored in collection objects 
according to a certain criterion. 

Now assume that we analyze this requirement specification using an 
object-oriented method, such as OMT [13]. OMT defines a set of rules and a 
process to identify the necessary classes, associations, aggregations, 
attributes, inheritance relations and operations 1. Applying OMT will possibly 
result in the class diagram shown in Figure 1. Here classes Library, 

1 In this chapter our focus is not OMT but we use OMT as an example of object-oriented 
software development methods. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 227 

LinkedList, OrderedCollection, and Array are identified by searching for the 
nouns in the requirement specification. Since these classes share the same 
abstract behavior, an abstract class Collection is introduced, which declares 
the necessary operations for all its subclasses. The identification of the 
aggregation relation and the operations read, write and sort, and the attribute 
collectionltems are derived from the requirement specification using the 
heuristics of the OMT method. 

While implementing the class diagram shown in Figure 1, the software 
engineer has to choose among several options. First, a suitable sorting 
algorithm has to be selected. Second, the structure of the attribute 
collectionltems must be determined. This structure will mainly depend on 
the subclass. For example, LinkedList will likely have a different attribute 
structure than Array. The operations read and write and if necessary other 
operations must be defined and implemented when the sorting algorithm and 
attribute structure are known. Further, the software engineer must determine 
if the sorting operation must be implemented in class Collection or in the 
subclasses. If the sorting operation is an abstract (virtual) operation in class 
Collection, then it has to be decided whether some parts of the algorithm 
must be implemented in the subclasses. Clearly, the class diagram shown in 
Figure 1 can be implemented in many different ways. 

Dealing with the alternatives is not only a concern of implementation. 
The class diagram shown in Figure 1 is just an example solution for the 
problem. For example, the sorting operation might be defined as a part 
object of class Collection. This would allow changing the sorting operation 
at run-time. One might also prefer to change part of the sorting algorithm, 
for example the sorting criteria (e.g. the Strategy design pattern). There are, 
of course, a considerable number of design alternatives, depending on the 
granularity of the required changes, and whether these changes must be 
realized at compile-time or run-time. 

Collection 

Collection Items 

readO 
writeO 
sortO 

Figure 1: Class diagram of the collection classes 



www.manaraa.com

228 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

2.2 Problem Description 

As illustrated in the previous section, the design space of the collection 
classes is detennined by many issues, such as data structures, sorting 
algorithms, and object-oriented modeling techniques. Although the presence 
of many alternative solutions indicates the richness of the object-oriented 
approach, the lack of tool support to compare the alternatives increases the 
complexity of the analysis and design process. 

Consider the object model as shown in Figure 1. We notice two major 
problems in defining this object model using an object-oriented method like 
OMT. First, there is no explicit support for identifying the possible design 
alternatives. Second, although software engineers may prefer to compare the 
design alternatives based on certain quality factors such as adaptability, 
perfonnance and reusability, there are no explicit rules to compare the 
alternatives. Of course while defining object models, software engineers 
apply their knowledge and experience. They generally compare the 
alternatives based on their intuition. This process, however, is rather implicit 
instead of explicit. 

Software is rarely designed for ultimate adaptability, performance or 
reusability but rather it is a compromise of multiple considerations. In 
general there are many correct solutions for the same problem. Even in the 
simple case of sorting items in collection objects, one may identify many 
alternative designs, which will differ with respect to adaptability, 
perfonnance and reusability factors. Providing ultimate adaptability may 
create too much run-time overhead. Aiming at the fastest implementation 
may result in unnecessarily rigid software. Aiming at the most reusable 
software may introduce redundant abstractions for a given problem. 
Software engineers must be able to explicitly compare, evaluate and decide 
between various alternatives based on the relative importance of the quality 
factors. 

3. DESIGNING FOR ADAPTABILITY 

In this section we will introduce a process to transfonn a requirement 
specification into adaptable object-oriented models. The objective of this 
process is to gradually introduce domain, design and implementation 
knowledge into the requirement specification, while selecting the 
alternatives based on their adaptability factors. This process is fonnally 
specified and implemented in a set of tools. We will apply these techniques 
to the example problem presented in the previous section. 

The design process for adaptability consists of the following phases: 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 229 

Finding the concepts in the requirement specification (section 3.1): This is a 
necessary step for every software development activity. The output of this 
phase is a set of concepts. 

1. Finding the concepts using domain analysis (section 3.2): In this phase 
the fundamental abstractions are searched within the context of the 
solution domain. The objective of this phase is to enrich the concepts 
obtained from the requirement specification with the concepts that are 
considered essential in the solution domain. 

2. Identification of the adaptable concepts (section 3.3): In this phase the 
software engineer decides which concepts must be adaptable or fixed. 
The software engineer may also consider various alternatives and assign 
adaptability degrees to the alternatives. The purpose of this phase is to 
make the software engineer conscious about his/her decisions with 
respect to the adaptability characteristics of the models that he/she 
develops. 

3. Identification of the object-oriented abstractions (section 3.4): The 
adaptable or fixed concepts delivered from the previous phase are 
classified according to the object-oriented abstraction techniques. The 
result of this phase is a consciously selected set of object-oriented 
abstractions with well-defined adaptability characteristics. 

4. Identification of the object-oriented relations (section 3.5): This phase 
aims at identifying the relations among the identified concepts. The 
result of this phase is a set of object-oriented relations that satisfy the 
adaptability requirements. 

The total result of this process is a set of alternative object-oriented 
models that implement the requirement specification. These models may be 
ordered according to the desired adaptability characteristics. Using this 
ordering, the software engineer may consciously select one among them. 
The software engineer may also compare the alternative models both from 
the adaptability and performance viewpoints. This will be explained in 
section 5. 

3.1 Finding the Concepts in the Requirement 
Specification 

To develop high quality software, it is necessary for any software 
development method that there is a well-defined requirement specification 
and sufficient knowledge available about the problem domain. We define a 
model M as a tuple consisting of a set of concepts and a set of relations 



www.manaraa.com

230 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

among these concepts. Let us now assume that MLibrmy is a requirement 
specification model of the collection library example given in section 2.1: 

MLibrary = (CLibrary, RLibrary) (Fl) 

MLibrary is represented by the sets CLibrary and RLibrmy, which correspond to 
the concepts and relations of the requirement specification, respectively. 
After analyzing the problem description, we identify the following set of 
concepts in CLibrary : 

CLibrmy = (Library, Collection, LinkedList, OrderedCollection, 

Array, collectionItems, sort, read, write) (F2) 

Note that these elements correspond to the elements of the object model 
shown in Figure 1. However, in (F2) we have not yet make any assumption 
about the types of object-oriented abstractions that represent these concepts. 
The relation set RLibrary will be considered in section 3.5. 

3.2 Finding the Concepts using Domain Analysis 

To identify the fundamental abstractions we will now analyze the domain 
of the problem. This commonly involves collecting the related information 
from various sources, and detecting the commonalties among them through 
comparison. These common abstractions generally correspond to the 
fundamental concepts in that domain2• The software engineer is responsible 
for combining the entities obtained from the requirement specification and 
the concepts from the background knowledge. 

We may discover the concepts of the sorting domain by comparing some 
well-known sorting algorithms. A number of these sorting algorithms is 
given in [14], After comparing these algorithms, we can see that they all 
share the following 5 concepts: the algorithm type, the range of the sorting 
process, reading and writing items in the collection, and the criterion to 
compare the items. 

The algorithm type basically defines the control-flow of the sorting 
process, and is used in the literature to distinguish the sorting techniques 
from each other. In [14], for example, selection, insertion, and bubble sort 
algorithms are presented. These sorting algorithms perform different with 
respect to various factors. For example, the bubble sort algorithm is very 
efficient if the collection is almost sorted. The range of the sorting process 

2 To identifY the fundamental abstractions of a software system, in chapter 5 of this book a 
synthesis-based approach is presented. Our approach here follows the synthesis-based 
approach. The reader may also refer to the various domain analysis methods presented in 
the literature [3] [3]. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 231 

defines which items in a collection must be sorted. Although, in [14], the 
range in all examples is set to the full size, after reading the motivation of 
the sorting algorithms, we decided to introduce the range as a concept. This 
allows modeling a partial sorting process. To be able to compare the items in 
a collection, the items must be read, and to change their order, they must be 
re-written in the collection. Obviously, sorting must be based on a certain 
criterion. In a simple case, numbers can be sorted by comparing their 
magnitudes, or in a more complicated case, items can be compared with each 
other based on certain policy, such as the arrival date, price, etc. Based on 
these observations, we define the fundamental concepts of the sorting 
domain as follows: 

CSorl = (AlgT, RN, RD, WR, CR) (F3) 

Here, CSort represents a set of concepts of the sorting domain where AlgT, 
RN, RD, WR and CR are the elements that correspond to the algorithm type, 
range, reading, writing and the comparison criterion, respectively. 

The concepts which are obtained from the requirement specification (F2) 
and through the domain analysis (F3) should be merged together. The 
concepts sort, read and write in CLibrary correspond to the concepts AlgT, RD 
and WR in CSorto respectively. We prefer the names used in the requirement 
specification. This results in the following set of concepts: 

CLibrary = (Library, Collection, LinkedList, OrderedCollection, 

Array, collectionItems, sort, RN, read, write, CR) 

'IiiM0!ideIliIS_iiiiiiiiiiiiiiiiiiii~ Model Graph 

ilLIII I Library I 

Conce t Set 
Library 
Collection 
LinkedList 
OrderedCollection 
Array 

ICollectionl 

~ 
IOrderedColiection) 

~ 
I collection Items I 

~ 
~ 
~ 

library. These classes should provide the necessary operations to read and write the 

elements aftha collection objects. Further, a sort algorithm is needed for sorting the 

:lpI,xl 

Figure 2: New models can be entered by the tool Model Definer 

(F4) 

We have developed various tools to implement the techniques explained 
in this chapter. As shown by Figure 2, the tool Model Definer is used to 
introduce new models such as MLibrary. Using the tool, for each model its 



www.manaraa.com

232 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

concepts and their relations can be defined. Every model is stored in a global 
repository and can be accessed by other tools in the system. 

3.3 Identification of the Adaptable Concepts 

Adaptability can be defined as the ease of changing an existing model to 
new requirements. To this aim, we have to deal with two contradictory 
goals: On one hand we have to fix the concepts for robustness and time 
performance. On the other hand, we need to make concepts adaptable for 
flexibility [18]. The predefined property P Adapt consists of two elements FX 
and AD, which is used to qualify concepts as fixed or adaptable, 
respectively1: 

PAdapt= (FX AD) (F5) 

Classification of concepts as fixed or adaptable creates alternative 
concept sets with different adaptability characteristics. The predefined 
properties support the techniques introduced in this chapter. These properties 
are implemented by the tools. We define the term design space to represent a 
set of design alternatives. Formally, design spaces are defined as function 
spaces that map concepts to properties. Consider, for example, the following 
design space: 

SAdaptLibrary:: CLihrmy -> PAdapt (F6) 

The space SAdaptLibrary maps the concepts of CLibrary to the elements of PAdapt 

and as such represents the total set of alternatives of library models with 
adaptability properties. Every alternative can be considered as a specific 
design decision. For example, the following tuples may be an alternative 
from this space: 

CAdaptLibrary = {(AD, Library), (AD, Collection), (FX LinkedList), (FX 
OrderedCollection), (FX Array), (AD, collectionIterns), (AD, sort), 
(FX RN), (AD, read), (AD, write), (AD, CR) (F7) 

This alternative defines the design decision in which the range Library, 
Collection, collectionIterns, sort, read, write and CR concepts have been 
selected as adaptable (AD) and the other concepts as fixed (FX). There are 
many more alternatives in SAdaptLibrary' The total number of alternatives can be 
computed using the following formula: 

3 Note that other adaptability models can be identified as well. For example, at this stage of 
design we may also distinguish between compile-time and run-time adaptability. We are 
currently experimenting with different adaptability models [17]. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 233 

totalNoAlternatives(SAdaptLibrary) = size(P AdapJ Size(CLibrarf (F8) 

= 211 = 2048 

Hereby, the function size returns the number of concepts of each model. 
The function totalNoAlternatives computes the number of alternatives of the 
design space. Obviously, the software engineer may not be interested in all 
the alternatives and in addition not all of them may be possible due to 
various constraints. The design space can be reduced by either selecting a 
sub-space or eliminating the set of alternatives that are not considered 
feasible from the perspective of the client requirements or the internal 
constraints. Formally, both approaches can be specified as follows: 

SAdaptLibrary:: {CLibrary ----> PAdapt I (cond)} (F9) 

Here, cond represents the condition for reducing the design space. The 
condition cond may consist of logical connectives to specify complex 
conditions. Assume, for example that the software engineer is only interested 
in the set of alternatives in which the concepts range (RN), read (RD), write 
(WR) and comparison (CR) are adaptable. This can then be formally 
expressed as follows: 

SAdaptLlbrary:: {CLibrmy ----> PAdapt I (RN---->AD) 1\ (RD---->AD) 1\ (WR---->AD) 1\ (CR---->AD)} (FlO) 

This reduces the number of the total set of feasible alternatives to 27= 128. 
Other selection and/or elimination conditions may be easily specified to 
further reduce the set of alternatives. The elimination conditions can be 
defined in the same manner by using a negation connective before the 
specified condition. 

We can quantify the design alternatives to order and compare these with 
respect to different criteria. To reason about the adaptability of each 
alternative in the acquired set we assign a natural number to each model. 
This can be specified as follows: 

SAdaptLibrary:: {CLibrwy ----> PAdapJ ----> N (Fll) 

The basic goal of this quantification of alternatives is that it helps to 
explicitly reason about each alternative with respect to the corresponding 



www.manaraa.com

234 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

quality factor. The adaptability degree for each alternative may depend on 
various conditions4 • 

In the following, we will describe the tools that implement the above 
operations for composing design spaces, quantifYing design alternatives and 
generating design alternatives. 

Figure 3 represents a snapshot of the tool Design Space Composer that 
can be used to define and depict the concept spaces. The software engineer 
can select a model and a property-set, and likewise can compose different 
design spaces. In Figure 3, the design space AdaptLibrary is composed from 
the property set Adapt and the model MLibrary. As it is displayed in the tool, 
AdaptLibrary includes 22 tuples, which have been generated by taking the 
Cartesian product of the sets Adapt and Library. The tool provides also 
means to use other set manipulation operations to refine design spaces. In 
this chapter, however, we will not elaborate on these and refer for a more 
detailed description to [17]. 

'Omtt.-;';,,';;9 
c.:' Cartesian 
(' Difference 
r Intersection 
r Union 
r· Join 

Desi n Slices 
_III@! 

~~---'~~~~br~~~~F~=ce--------
Colisclion-FX 

~ ~~:er~~i~~I~;clion_FX 
2""~""'---~ ~~;~~~:n[tems-FX 

sort-FX 
RN-FX 

Figure 3: A tool for composing design spaces 

Figure 4 represents a tool for quantifYing the tuples of a design space. 
The top-right widget Priority displays the priority number for each generated 
tuple. Depending on the concept type, different priorities can be assigned to 
the tuples. For example, if adaptability is considered important, then a higher 
priority value can be given to the adaptable tuples. In Figure 4, among the 
adaptable tuples, the concept sort has the highest priority and range RN has 
the least. The tuples read and write have the same priority. The software 
engineer here assumes that from the perspective of adaptability, changing the 

4 This value should be interpreted as an indication of the software engineer's preference. The 
assigned adaptability degree does not imply that it is also available. During the further 
refinement process when other concerns are introduced it may appear that the required 
adaptability is not possible due to for example language constraints. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 235 

algorithm type has the most impact and changing the range the least. When a 
priority value is changed, the tool automatically computes the new values. 
This allows the software engineer to experiment with the priority values. 

Nij"M,tftMlM· ,16.,1 
Models 

'~ ........... ~.:I-:-i::~'Y-AO----------rprj-or~-.r)) 
Ip,,,.oivS'~ ........ ~ c'''"tw"AD 

II~iiii"'~I_'_Olle_ctiO_'''_'m_'A_O ______ ~ __ 
sort·AD 

:::JI_R_N'A_O __________ --t--__ ,! 

Updale Degrees-F':c.:"d'-.j,AO=---____ +-_" 
~: ~n~i~nr ~ r I iI_""-'-'t~'_AD _____ +--_)ll 
t. CR·M 4 

"Slypd~i"'H 'il" .,',",.,. ,,"," "'B,'} 
AdaptUbrilrpepresents the Li.brary.concepts together with their adaptability ~ 
properties, SmceaclaplablhtyIS an Important requirement the tuples wth 

I AD properly have been assigned a higher value than the tuples with a FX fJ 

Figure 4: A tool for quantifying design alternatives 

To generate alternatives from the predefined design spaces the tool 
Alternative Generator is used from which a snapshot is shown in Figure 5. 
Initially, the set of alternatives for the design spaces listed in the list box 
Design Spaces is not generated. The widget no. alternatives defines the 
number of alternatives that can be derived from the selected design space. 
The software engineer can generate the set of alternatives by pressing the 
Generate button. Since this number of alternatives can be quite large, the 
tool gives an error message when the number of alternatives exceeds a 
predefined maximum value. If the number of alternatives is smaller than the 
maximum default value the alternatives will be generated and listed and 
ordered according to their priority values. This ordering of the alternatives is 
also shown in the graphic below the list of alternatives. In the graphic each 
point represents an alternative. The graphic shows only 30 alternatives at 
once. To browse the other alternatives the left and right arrows at the right 
corner of the window can be used. 

The software engineer can directly select some of these alternatives 
through the menu of the alternatives list and store this in the repository. The 
design space can also be reduced by either pressing the button Matrix 
Selection or the button Rule-Based Selection that opens tools for conditional 
selection of the sub-spaces and heuristic rule supported selection, 
respectively. 



www.manaraa.com

236 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

m·!I=IBIIII· iilgi;xl 

No. Altornatives Degree 
ObjectAdaplLibrary 

l' {(Libra.ry-FX) (Colledion-FX) (LinkedList-FX) (OrderedCollection-FX) (Arlfly-FXj 0 

[1': 2 {(Ubrery-AD) (Collection-FX) (UnkedList-FX) (OrderedColiedion-FX) (Arrey-FX) 1 

inc. altematlves:~ 3 {(Library-FX) (Collection-AD) (LinkedList-FX) (OrderedColleC1ion-FX) (Array-FX) 1 

4 {(Library-FX) (Colledion-FX) (LinkedList-AD) (OrderedColledion-FX) (Arrey-FX) 1 

""J,i 5 {(library-FX) (Collection-FX) (LinkedList·FX) (OrderedCollection-AD) (Array-FX) 1 

;i~"'''''''''''''' I{I " ",;,(COI,lecti~c:FX) (LickedLiSI-F)< (A"~>::~111 

I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2 

I 
(3/2) 

,1, k 1 1 1 1 1 1 1 1 1 
1 

I 

(1/2) 
I 

I I 0 
0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
Concept Set I1lJO_ 

Figure 5: The tool Alternatives Generator is used to generate concept sets from concept 
spaces 

Figure 6 shows the dialog window that is opened if the software engineer 
presses the button Rule-Based Selection. The window shows a dialog with 
questions that the software engineer needs to select the relevant tuples. In the 
collection library example, 11 questions are asked. As a reply, the software 
engineer may choose Yes, No or I don't know. In case I don't know is 
selected, all the alternatives for the corresponding concept are kept. The 
number of the sets to be generated is displayed in the dialog as well. 

The reduced design spaces can be stored as a new design space and 
imported by the relevant tools for further refinement. After selecting the 
tuples, and generating the alternatives the software engineer may then 

compare these based on tc~h~e~ir_Id •••••• ~[iJ.I 

Do you think that the cancellI ArrllY is adllptl:lble? 

rYes 
(' No 

r.- I dort't know ==J=~ 

Figure 6: The dialogue that helps the software engineer to select the required adaptable tuples 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 237 

3.4 Identification of the Object-Oriented Abstractions 

In the object-oriented model, a concept can be represented either as a 
class, an operation or an attribute. The predefined property P Object is a set of 
object modeling alternatives for concepts: 

PObjeet = (CL, OP, AT) (Fl2) 

Here, CL, OP and AT, represent classes, operations and attributes, 
respectively. We can further classify operations as virtual (Opv) and not 
virtual (Opn) operations, attributes as mutable (ATm) and constant attributes 
(Ate), etc5• Virtual operations can be polymorphically overridden through 
inheritance. Constant attributes cannot change at run-time. 

The following concept space SObjectAdaptLibrary maps the concepts of 
CAdaptLibrary to the elements of P Object and as such represents the total set of 
alternatives of library models with adaptability properties: 

SOhjeetAdaptLlbrary:: CAdaptLibrary ----> PObjeet (F13) 

Again, this design space may be reduced by selection functions: 

SObjectAdaptLibrary :: ---7 {CAdaptLibrmy ----> P Object I (cond)} (F 14) 

We have to extend the adaptable concept model with the property 
objectModel to store one of the selected object-oriented abstractions, which 
is either CL, Opv, 0pn, ATm or ATe. 

The tool Alternatives Generator, which was shown in Figure 4 for 
selecting the adaptable library concepts, can be used here as well. This space 
is generated from the property Object and the concept set AdaptLibrary. The 
software engineer may directly select alternatives from this space or first 
reduce it. When the button Rule Assistance is pressed, a dialog window is 
opened6 such as shown in Figure 7. During a dialog session, the following 
questions could be asked to the software engineer: 

IF THE TUPLE IS ADAPTABLE: 

(Rl) IF THE CONCEPT REPRESENTS AN OPERATION AND RUN-TIME 

ADAPTABILITY IS REQUIRED, 

THEN DEFINE IT AS A PAIR OF OPERATION (OPy) AND CLASS (CL); 

5 It is also possible to define derived classes and attributes. 
6 This dialog window is generated by the property Object. In this way, the tool Alternatives 

Generator remains generic. Similarly, the dialog window shown in Figure 6 was generated 
by the property Adapt. 



www.manaraa.com

238 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

(R2) IF THE CONCEPT REPRESENTS AN OPERATION AND COMPILE-TIME 

ADAPTABILITY IS REQUIRED, 

THEN DEFINE IT AS A VIRTUAL OPERATION (OPv); 

(R3) IF THE CONCEPT IS AN ATTRIBUTE, THEN DEFINE IT AS A MUTABLE 

ATTRIBUTE (ATM)' 
(R4) IF (Rl) TO (R3) ARE NOT APPLICABLE THEN DEFINE THE CONCEPT 

AS A CLASS (CL); 

IF THE TUPLE IS FIXED: 

(R5) IF THE CONCEPT IS AN ATTRIBUTE, 

THEN DEFINE IT AS A CONSTANT ATTRIBUTE (AT c); 
(R6) IF THE CONCEPT IS AN OPERATION 

THEN DEFINE IT AS A (NON-VIRTUAL) OPERATION (OPN) 

(R 7) IF (R5) AND (R6) ARE NOT APPLICABLE 

THEN DEFINE THE CONCEPT AS A CLASS (eL). 

The rule (Rl) is assumes that if the concept is an operation and is run­
time adaptable, then it must be represented as an operation declared at the 
interface of a mutable object (like the Strategy pattern). According to the 
rule (R2), if the concept is an operation and is compile-time adaptable, then 
it can be defined as a virtual (abstract) method (like the Template Method 
pattern). If, however, the concept is an attribute and it is adaptable, then it 
can be defined as a mutable attribute (R3). The rule (R4) assumes that if the 
concept is adaptable and the rules (Rl) to (R3) are not applicable, then the 
concept can be defined as a class. The rule (R5) suggests that if the concept 
is a fixed attribute, then it can be defined as a constant attribute. According 
to the rule (R6), if the concept is a fixed operation, then it can be selected as 
a non-virtual operation. Finally the rule (R 7) assumes that if the fixed 
concept is neither an attribute nor an operation, then it can be represented as 
a class. Note that the rules (R4) and (R7) are quite similar, since they both 
select the class abstraction. We could make distinction between these rules 
by assuming that (R4) and (R7) create mutable and constant classes 
(objects), respectively. In most object-oriented languages, however, objects 
are per default mutable. Additional programming effort is necessary to 
enforce constant objects. We therefore do not make distinction between 
mutable and constant objects. 

These rules considerably simplify the generation of a concept set. 
Although the possible number of alternative concept sets is 511 = 48828125, 
by using the heuristics rules, a concept set can be selected only in 11 steps. 
Similar to the dialog window shown in Figure 6, if the software engineer 
selects the button I don't know, then the alternative concept sets are 



www.manaraa.com

DERiVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 239 

generated. Again, these alternatives can be compared with respect to their 
adaptability degrees7• 

We will now illustrate object-oriented concept identification process 
using the collection classes example. Assume that based on the functions 
(F7) and (F14), and by using the tool Alternatives Generator the software 
engineer decides on the following adaptability properties: 

CObjectAdaptLibrary = ((CL, AD, Library), (CL, AD, Collection), (CL, FX, LinkedList), 
(CL, FX,OrderedCollection), (CL, FX, Array), (AT"" AD, collectionIterns), 
(OFv, AD, sort), (CL, AD, sortClass), (ATe> FX, RN), (OFv, AD, Read), 
(OFv, AD, write), (OFv, AD, CR), (CL, AD, CRClass)) (F 15) 

Here, the adaptable tuples (AD, Library), (AD, Collection), (AD sort) and 
(AD, CR) are considered as classes. Note that based on the rule (Rl), to 
represent sort and CR two new tuples are introduced. To distinguish 
operation and class names, we use the names sort, sortClass, CR and 
CRClass. The adaptable tuples (AD, read) and (AD, write) are represented as 
virtual operations. The adaptable tuple (AD, collectionItems) is considered 
as a mutable attrubute. The fixed tuples (FX, LinkedList), (FX, 
OrderedCoUection) and (FX, Array) are considered as constant classes. The 
fixed tuple (FX, RN) is considered as a fixed attribute. 

jP Rule Assurance 'Of Oblect Concepts !1m E! 

Rule-----------~ 

Do you think that the concept AD-Linked List is: 

e an Operation end Run-time Adaptable? 

(' an Operation and Compile-time Ade.ptElble? 
n an Attribute? 
n None of the a.bove. 
~ I don't know 

l Selected Tu les 

Figure 7: The dialogue used to generate object-oriented concepts 

3.5 Identification of the Object-Oriented Relations 

We will now consider the relations among concepts. As an example, 
consider the following table, which represents the relations among the 

7 This tool is implemented as an expert system, which applies object-oriented heuristics to 
reduce the design space. Various different heuristics can be defined by using the method 
engineering facilities of the tool [17]. 



www.manaraa.com

240 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

concepts of MLibrary' This table is derived from the requirement specification 
and domain analysis8• 

Table 1: Identification of relations among the concepts of Library 

The top 4 rows are directly derived from the requirement specification. 
Here, it is assumed that the concept Library contains the collections. The 
second row indicates that Collection is an abstraction of LinkedList, 
OrderedCollection and Array. The third row indicates the relation between 
collectionltems and the collections. The fourth row represents the relation 
between sorting and the collections. 

The rows 5 and 6 are derived from the sorting domain. The fifth row 
indicates the relation between the sorting algorithm and range determination, 
reading, writing and comparison operations. The sixth row represents the 
relation between collectionltems and range determination, reading,. writing 
and comparison operations. 

After the identification of the object-oriented abstractions (like in (F 14)) 
additional tuples and therefore new relations may be introduced. For 
example, in previous section we have replaced (AD, sort) and (AD, CR) by 
the pair of concepts (OPv, AD, sort) and (CL, AD, sortClass) and (OPv, AD, 
CR) and (CL, AD, CRClass). By using the tool Model Definer new concepts 
can be easily introduced at any time. The other related tools are updated 
automatically. 

The relation among the concepts can be represented as a pair of concepts. 
Consider, for example the following lists of tuples which are derived from 
Table 1 after the adaptability and object-oriented properties of the concepts 
have been selected: 

8 The relations can be derived using any object-oriented analysis method. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 241 

RObjectAdaptLibrary = (((CL, AD, Library), (CL, AD, Collection)), ((CL, AD, Library), (CL, FX 
LinkedList)), ((CL, AD, Library), (CL, FX OrderedCollection)), ((CL, 

AD, Library), (CL, FX Array)), ((CL, AD, Collection), (CL, FX 

LinkedList)), ((CL, AD, Collection), (CL, FX OrderedCollection)), ((CL, 

AD, Collection), (CL, FX Array)), ((ATm, AD, collectionltems), (CL, AD, 

Collection)), ((ATm, AD, collectionltems), (CL, FX LinkedList)), ((ATm, 

AD, collectionltems), (CL, FX OrderedCollection)), ((ATm, AD, 

collectionltems), (CL, FX Array)), ((OPv, AD, sort), (CL, AD, 

Collection)), ((OPv, AD, sort), (CL, FX LinkedList)), ((OPv, AD, sort), 

(CL, FX OrderedCollection)), ((OPv, AD, sort), (CL, FX Array)), ((OPv, 

AD, sort), (ATe, FX RN)), ((OPv, AD, sort), (OPv, AD, read)), ((OPv, 

AD, sort), (OPv, AD, write)), ((OPv, AD, sort), (CL, AD, CR}}, (OPv, AD, 

sort), (CL, AD, sortClass), ((ATm, AD, collectionltems), (ATe, FX RN)}, 

((ATm, AD, collectionltems), (OPv, AD, read)}, ((ATm, AD, 

collectionltems), (OPv, AD, write)}, ((ATm, AD, collectionltems), (CLm, 

AD, CR)}, ((OPv, AD, CR), (CL, AD, CRClass)}} (F16) 

Note that the new concepts sortClass and CRClass are added to the tuple­
set as well. 

The predefined property P ObjectRelation is a set of object modeling 
alternatives for relations: 

PObjectRelatiOIl = (AG, IN, WS, CS, RS, WS) (F17) 

Here, AG, IN, WS, CS, RS and WS, represent aggregation, inheritance, 
owns, calls, reads and writes relations. These relations are, explained in 
Table 2. 

Table 2: Object-oriented relations 

~ 
A.CL B.OP, C.OP" D.AT,n KATe 

FROM 

1. CL aggregates! owns owns owns owns 
inherits from 

2.0P, owned by! calls calls reads reads 
inherited from ( directlinh ( directlinherited) -writes 

erited)_ lin-lines 

3.0P" owned by calls calls reads reads 
( directlinh ( directlinherited) -writes 
erited) lin-lines 

4.ATm owned by! read- read-written by derived derived from 
inherited from written by from 

S.ATe owned by read by read by derived derived from 
from 

In this table, the columns and rows correspond to the object-oriented 
constructs in a relation set. The elements of the table represent the possible 



www.manaraa.com

242 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

object-oriented relations. Since most object-oriented relations are directed, 
we define the direction of the relations from the concepts of the first column 
to the concepts of the first row. For example, the relation 2D should read as 
OPv reads-writes ATm. 

The relation lA indicates that the possible relations between two classes 
are aggregate and inheritance relations. The relations IB to IE are all owns 
relations because operations and attributes must always belong to a class. In 
the second row, the relations 2B and 2C specify that OPv can call on OPv or 
OPn . Sometimes, the calls on fixed operations can be in-lined in the 
implementation of the calling operation. Similarly, relations 3D and 3E 
mean that OPv can read and write on ATm but can only read from ATe. The 
other relations are self-explanatory. 

The following relation space SObjectRelationAdaptUbrary maps the relations of 
RAdaptLibrary to the elements of P ObJectRelation and as such represents the total set 
of alternatives ofthe object-oriented relations in the adaptable library: 

SObjectRelationAdaptLibrmy .'.' ---f {RAdaptLibrary ----> P ObjectRelation I (cond) } (F 18) 

Here, cond represents the restrictions on the possible relations. The 
restrictions must be derived from the semantics of the application, as defined 
in Table 1. In addition, as shown in Table 2, in the object-oriented model 
only a certain kinds of relations are possible. 

if."" Oblect Relallon GeneratOi I!!II!J£I 

i r'd "" r-~r'" """''''] 
Choose one of the e.lternntives:----------, 

r I Colledion 

{.', I. Arrey 

Library aggregates Collection 
Library aggregates LinkedList 

I, inherits trom 

I inherits from 

Library aggregates OrderedColleclion 
Library aggregates Array 
linkedList inherits from Collection 
OrderedCollection inherits from Collection 

I Collectio,~ 
I Arrey 

Figure 8: A tool for generating object-oriented relations 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 243 

The tool Object Relation Generator as shown in Figure 8 helps the 
software engineer to select the appropriate relation. The top widgets Relation 
Sets and Object Concept Sets list the relations and concept sets of the 
models. The selected concept sets must have their P Object values defined. It is 
also possible to consider alternative concept sets by selecting an item from 
the widget Object Concept Spaces. 

Consider the following example. According to the relation I.A 
from Table 2, the first relation ((CL, AD, Library), (CL, AD, 
Collection)) may have 4 possible implementations: These are 
"Library aggregates Collection", "Collection Aggregates Library", 
"Library inherits from Collection" and "Collection inherits from 
Library". We assume that the software engineer selects the "Library 
aggregates Collection" relation. If the relations were defined as 
directed relations, then the tool would only propose 2 object­
oriented relations. The tool iterates through all the relations. 
Now assume that based on the selections of the software engineer, the 

following relation set is generated: 
RObjectRelationAdaptLibrary = (Library aggregates Collection), (Library aggregates LinkedList), 

(Library aggregates OrderedCollection), (Library aggregates Array), 

(LinkedList inherits frorn Collection), (OrderedCollection inherits frorn 

Collection), (Array inheritsfrorn Collection), (collectionIterns owned by 

Collection), (collectionIterns owned by LinkedList), (collectionIterns 

owned by OrderedCollection), (collectionIterns owned by Array), 

(Collection owns sort), (LinkedList owns sort), (OrderedCollection owns 

sort), (Array owns sort), (sortClass owns sort), (sort reads RN)), (sort 

calls read), (sort calls write), (sort calls CR), (RN reads collectionIterns), 

(read reads collectionIterns), (write writes collectionIterns), (CR reads-

writes collectionIterns), (CRClass owns CR) (F 19) 

The relations in (FI9) can be largely simplified by using object re­
factoring rules [11]. For example, common aggregation relations, attributes 
and methods can be moved to their super class, if any. In (FI9) the 
aggregation relations between Library and Collection, LinkedList, 
OrderedCollection and Array can be reduced to "Library aggregates 
Collection" because all other classes inherit from Collection. Similarly, the 
aggregation relations between the collection classes and sort can be reduced 
to "Collection aggregates sort". The "owned by" relations between the 
collectionIterns and the collection classes can be reduced to "collectionIterns 
owned by Collection". Further if an operation is owned by multiple classes 
and if there is an inheritance relation between these classes, then the 



www.manaraa.com

244 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

operation can be moved to the super class. If these classes do not inherit 
from each other, then the method can be replicated in every class. The re­
factoring of the object diagram can be advised or largely realized by a tool. 
In the appendix, the class diagrams of the six selected alternative 
implementations of MLibrary after the re-factoring process are shown. 

4. DESIGNING FOR TIME PERFORMANCE 

This section introduces a simple process to determine the time 
performance factors of models at various abstraction levels. These factors 
can be used to compare the alternative models. The performance analysis 
process is based on simulation. For this purpose, we have developed a 
simulation environment and a set of tools. This environment involves a set of 
random generators, time measurement and display units9 • The performance 
analysis process involves the following steps: 

1. Construction of the model: To determine the probabilistic time 
performance-value of a model, first its concepts and relations must be 
identified. It is possible to determine the relative time performance of a 
model even before its adaptability and object properties are determined. 

2. Identification of the behavioral concepts: We need to identify the 
concepts that contribute to the behavior of the model. For example in 
MLibrary, the concept sort is the most significant concept for the sorting 
process. 

3. Identification of the interaction diagram: An interaction diagram 
specifies a call pattern among the related concepts. For example, when 
the operation sort is invoked, depending on the sorting algorithm, sort 
calls on other concepts to realize the sorting process. To simulate a 
model it is necessary to define a sub-graph, which represents the 
interaction diagram of that model. For example, the sub-graph shown in 
Figure 9 is the interaction diagram of MLibrary for sorting the items in 
the collection objects. For simplicity, here the direction of calls is not 
shown. 

9 The emphasis of this section is not to introduce a new performance analysis technique but 
adopt an existing technique to compare various design alternatives. In the literature, many 
performance analysis techniques have been published [15][8]. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 245 

Figure 9: The interaction of concepts in MLibrary for sorting the items 

4. Specification of the behavior: The concepts identified in step 2 must be 
specified. For example, for MLibrary, we have searched for various 
sorting algorithms in the sorting domain [14]. We have then selected 
the bubble and selection sort algorithms as the two possible 
implementations of the sorting process. 

5.Implementation of the simulation graph: We have developed a 
framework to implement the simulation graphs such as the one 
shown in Figure 9. The nodes of this graph must be specialized 
within the simulation context. For MLibrary, we created 6 nodes and 
then specialized these nodes according to the graph shown in Figure 
910. 

6. Determination of the simulation parameters: This involves 
parameterization of the random generators, the range of simulation, 
etc. For example, we have simulated the interaction diagram of 
MLibrary in 2 different environments. In the first setting, we fixed 
the number of items in the collection objects to 100, we run the 
sorting process 100 times, and we randomly generated the items in 
the collections using the Linear Congruential Generator algorithm 
[12]. In the second setting we changed the number of items in the 
collections randomly. 

7.Determination of the probability values of calls: Using the facilities of 
the simulation environment, the number of calls per relation must be 
counted and normalized with respect to the total number of calls. 
These values represent the probability of calls. Figure 10 shows the 
tool, which displays the probability values of calls of MLibrary. 
Here, figures 10(a) and 1 O(b) display the simulation environment for 
the first and second settings, respectivelyI I . 

10 Depending on the application, various simulation languages can be used [8][15]. 
II The purpose of this phase is to obtain reliable probability values. The detailed analysis of 

this topic is considered beyond the scope of this chapter. 



www.manaraa.com

246 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Note that the probability of calls to RN (range calculation) is very small 
and therefore can be neglected. The relations between classes do not directly 
influence the performance and therefore they are set to zero. We can now 
determine the relative performance values of alternative implementations of 
MLibrary, provided that the interaction patterns remain the same. As 
illustrated in the previous sections, a model can be implemented in many 
different ways, and the relative performance factors of models will depend 
on the type of the object-oriented relations used12 • We would like to reason 
about the alternatives by assigning a time performance value to each model. 

'j8~ 5011 Performance Model· Slatlsltcs , I!lIil Ei ",'?I50rt Pedormance Model- Statistics I!I~EI 

Simulation Parameters-----_ Simulation Paro.meters------

Algorithm Type: ISubbleSort Algorithm Type: I, Bubble~ort 
Collection Size: I 100 C Varioble Collection Size: I 637 P; Variable 

Number of Runs: I 100 Number of Runs: I 100 

Simulation Simulation 08.ta 

#Current RUn Average #Current Run AverBge 

Comparison: I 4950 I 0.272957 Comparison: I 202566 I 0.280262 

Range: I I 5.51428.-5 Range: I 1 1.46356.-5 

Write: I 1654 I 0.090537 Write: I 57394 I 0.0795992 

Read: 1 11554 'I 0.636451 Read: 1 462526 [ 0.640124 

Figure 10: The frequency of calls in MLibrary: (a) with 100 items, (b) with randomly varying 
number of items. 

The relative time performance value of a model IS computed m the 
following way: 

performance = 100/ I Pi ri (F21) 

Here, i is the index of the set, where Pi and ri represent the probability 
and relative cost values of the indexed element of the set, respectively. The 
cost calculation must be iterated through the range of the set. We multiply 
the result with 100 for the scaling purpose. The relative cost values of 
relations are language dependent. Since our experimental environment is 
implemented in the Smalltalk language, the following average cost values 
are measured from our Smalltalk system. These values are normalized with 
respect to the cost of an in-lined call: 

12 The concepts of a model influence the call relations indirectly, because they determine the 
type of relations used (Table 2). 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 247 

Table 3: The relative cost values in the SmalItalk system 

Relation type Cost 
message call 5 
inherited call 4 
inline 1 
attribute read 5 
attribute write 16 

In the previous sections, the probability of calls was assumed to be the 
same for every alternative model. This assumption is valid if the behavioral 
concepts of the models remain the same. If these concepts are adaptable, 
then we need to build a new simulation model for each interaction pattern. 
For example, in addition to the bubble sort algorithm, we also simulated the 
selection sort algorithm. As published in the literature [14], the selection sort 
algorithm generally performs better than the bubble sort algorithm. 
However, if the items in the collection are almost sorted, then the bubble sort 
is faster. Therefore the choice of an algorithm depends on the context of 
execution. A more detailed discussion about simulating multiple alternative 
algorithms is given in [17]. 

5. BALANCING ADAPTABILITY AND 
PERFORMANCE FACTORS 

The appendix of this chapter shows the adaptability and performance 
values of the six design alternatives of the collection library. We will now 
compare these alternatives. In Figure 11 the Y-axis and X-axis show the 
performance and adaptability degrees of the alternative models, respectively. 
The models are represented as diamonds in the graph. The model numbers 
are shown at the right of the corresponding diamonds. We would like to 
emphasize that these models cannot be compared by considering their 
relative performance and preferred adaptability degrees only. The definition 
of these models as shown in the appendix must be considered as well. 

Model 1 has the highest performance and lowest preferred adaptability 
value. This is of course an expected result since the implementation of the 
sort algorithm is in-lined. For the total scale we can observe that a higher 
preferred adaptability degree eventually results in a lower performance 
degree. This conclusion, however, is not necessarily valid for models with 
close preferred adaptability degrees. As it can be derived from Figure 11, 
Model 2 provides a slightly higher preferred adaptability degree than model 



www.manaraa.com

248 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

4 but still has a higher performance degree. In Model 2 the comparison 
criterion is the only adaptable operation whereas the other operations are in­
lined. In model 4 two operations are compile-time adaptable, that is read and 
write, and the comparison operation is in-lined. Thus, in model 4 more 
components are adaptable than in Model 2. This results in a lower 
performance for model 4. From this we can conclude the following: To fulfil 
the flexibility requirements, sometimes a concept must be made run-time 
adaptable. In this case, it may be still possible to obtain a high performance, 
if all other concepts are fixed. 

50 

fl 40 

~ 30 
E .g 20 

~ 10 

o 
o 

.1 2 

1""" 

10 

.3 

20 

Adaptability 

. ~ ~ ~ 
30 40 

Figure]]: The relative cost values of the selected design alternatives 

Model 3 is similar to Model 4. In Model 4, the comparison criterion was 
made run-time adaptable but to compensate the performance loss, all other 
operations were fixed. In Model 3, however, no such compromise is made. 
The performance difference between Model 3 and Model 4 shows the 
penalty paid for making the comparison criterion run-time adaptable without 
making any compromise. 

Model 6 and Model 5 have both four operations adaptable. In Model 6 all 
the four selected operations are run-time adaptable whereas in Model 5 two 
of the four operations are compile-time adaptable. Although Model 6 has 
thus a higher preferred adaptability degree than Model 5 it performs slightly 
less. The main reason for this is that in Model 5 the operation sort is made 
adaptable whereas in Model 6 this is made fixed. Since this operation has the 
highest adaptability priority (5) it substantially increases the preferred 
adaptability degree of model 5. Nevertheless, this operation has a minor 
effect on the performance degree. This means that if an operation is not 
executed frequently, making that operation adaptable will cause practically 
no performance degradation. We can also conclude that run-time 
adaptability increases the preferred adaptability degree but has a minor 
additional effect on the performance degree with respect to compile-time 
adaptability. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 249 

The presented results are computed for the bubble sort algorithm and the 
distribution of the collection items to be sorted is the same for all the models. 
The bubble sort algorithm, however, is faster than the selection sort 
algorithm if the items in the collection objects are largely sorted. Model 5 
allows run-time substitution of the sorting algorithm and the comparison 
criterion. The performance degree of this model is 12. If the number of the 
items to be sorted continuously changes, then this model may have a better 
average time performance13 • Obviously, if the probabilistic behavior of the 
change is known, it is possible to compute when implementations that allow 
behavioral change provide a better time performance. 

To verify the validity of the relative time performance values of the 
selected models, we have implemented the models 1, 2 and 6. We have 
generated the collection items using the same simulation environment as 
shown in Figure 10. The time performance values of the models 1, 2 and 6 
were measured as 585, 910 and 1310 milliseconds, respectively. In the 
following, the ratio of the measured values is compared with the estimated 
values. We can conclude that the estimated values are reasonably accurate. 

1310/585 = 2.2 1310/910 = 1.4 910/585 = 1.6 

40116 = 2.5 40/27 = 1.5 27116=1.7 

From Figure 11, the software engmeer can select on the Y-axis an 
acceptable time performance, say 18, and can determine the affordable 
degree of preferred adaptability from the X-axis. Note that by using the table 
above, it is also possible to convert the relative values to the actual time 
performance factors. 

6. RELATED WORK 

Adaptability is generally considered as an important and desired 
characteristic of software systems and a number of research groups have 
been active in this area. For example, to improve the adaptability 
characteristics of software systems, the Demeter method [34], Composition­
Filters [1], Aspect-Oriented Programming [7], and Reuse Contracts [16] are 
proposed as extensions to the object-oriented model. We consider these 
contributions important and complementary to our work. Our emphasis, 
however, is different. We do not propose an extension the to object-oriented 

13 Part of the performance penalty in this model is due to mn-time adaptability of the 
comparison criterion. 



www.manaraa.com

250 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

model, but introduce a technique to compare the design alternatives from 
adaptability and performance viewpoints. 

In [6], the concept of variation point is introduced to specify locations at 
which variation will occur. The variation points are generally expressed 
using variants, which are type-like constructs. Although our adaptability 
modeling approach is intuitively similar, we propose an adaptability model, 
which can be applied along the software development process for comparing 
the design alternatives. 

Several publications have been made on object-oriented software metrics 
[4]. Software metrics is quantitative measurements about any aspect of a 
software project. This may include project, process and product metrics. 
Product metrics aim to determine the properties of the software product, 
such as the amount of coupling, cohesion, code complexity, etc. Most 
product metrics as published in the literature are generally determined after 
the software system is built and there is no clear relation between the quality 
demands of requirements, compromises being made, and the quality of 
systems being built. 

Simulation techniques have been used in analyzing the performance of 
software systems for many years [8]. In our example method, we applied a 
simple simulation technique to determine the relative performance 
characteristics of the design alternatives. In this chapter our intention is not 
to introduce a new sophisticated performance analysis method, but rather 
adopt an existing suitable technique. 

During the last decade, the so-called Software Performance Engineering 
(SPE) discipline has emerged for combining the performance analysis 
techniques with software engineering methods [15]. This discipline aim to 
construct performance models of software systems by using data about 
envisioned software processing. These models are used to compare software 
and hardware alternatives for solving performance problems. The techniques 
used within the context of SPE research are relevant to our work, and can be 
applied together with the techniques presented in this chapter. Our emphasis 
is to compare the design alternatives both from performance and adaptability 
viewpoints, whereas the SPE research mainly emphasized the performance 
factors of the design alternatives. 

The techniques presented in this chapter can be considered as a special 
form of Relational Algebra [5]. Our tools implement operations that are 
similar to the union, product, select and join operations of Relational 
Algebra. The select operation in our case is based on design heuristics. We 
therefore term our technique as Design Algebra. We are currently applying 
and formalizing Design Algebra within the context of a large transaction 
system design [17]. 



www.manaraa.com

DERiVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 251 

Generally speaking, our work can be classified under the so-called "AI­
based problem solving techniques" [9][19]. These techniques generally 
implement a problem solution strategy and a set of heuristics to guide the 
engineers in implementing their designs. Most of the work in this area, 
however, is in designing mechanical or electronic systems. 

7. EVALUATION 

For several years, we have been applying Design Algebra and the related 
tools in various projects [17]. Further, we tutored Design Algebra in various 
conference tutorials14 and professional courses. Based on these experiences, 
we will now evaluate Design Algebra from the perspective of scalability, 
complexity of the design space, complexity of the process, adaptability and 
performance analysis. 

Scalability: In this chapter we use a rather simple example for illustrative 
purposes. In practice, however, we applied Design Algebra and the related 
tools in larger projects such as atomic transaction system design [17]. 
Currently we are experimenting with Design Algebra in designing quality­
aware middleware systems. With respect to scalability, we observe that the 
techniques presented in this chapter do not necessarily increase the 
complexity of current object-oriented practices. For example, the only 
required extensions to the UML models are the introduction of additional 
attributes for storing the adaptability properties and preferred adaptability 
values. From methodological point of view, in addition to applying familiar 
object-oriented design rules, in our case the software engineers have to 
determine whether a concept should be adaptable or fixed. If desired, the 
preferred adaptability values for concepts may be defined as well. This does 
not necessarily complicate the process, since only a few questions have to be 
answered. In addition, this process is supported by the tools. The 
performance analysis process is limited to a comparative performance 
analysis and therefore does not require detailed performance analysis 
models. 

Complexity of the design space: The design space concepts as 
formulated in (F6), (F8), (F 13) and (F 18) are purely conceptual. The 
software engineers do not deal with the total number of design alternatives. 
In practice, only a relevant number of alternatives, say up to 15, are 

14 The techniques presented in this chapter were partially tutored in ECOOP'98, 
OOPSLA'99 and ECOOP'2000 conference tutorials. 



www.manaraa.com

252 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

considered at a time. One may claim that even a limited number of 
alternatives increase the complexity of design. We think that in any realistic 
project alternative models are always defined. In general, these models are 
not managed properly and kept in various files and/or repositories. Our tools 
keep tract of the differences between the alternative models and provide 
means to compare, select and if necessary eliminate them. We think that our 
approach may reduce the complexity in dealing with alternatives, which may 
be hidden in the project environment. 

Complexity of the process: The refinement process as presented in this 
chapter, such as problem understanding, domain analysis, object modeling 
and implementation is not fundamentally different from the advises of most 
object-oriented methods. The only additional work is to consider the 
adaptability values of concepts. For performance analysis we also consider 
the probability values of interactions. 

The software engineer may introduce new concepts at any stage of the 
process. The tools keep tract ofthe changes. For example, if a new modeling 
element is introduced in later stage, the tool asks the software engineer if its 
adaptability characteristics have to be considered. We consider rule-base 
support as shown in figures 6 and 7 extremely useful during the design 
process. Further, while gathering the input for rules, the system creates an 
automatic documentation of the design decisions. 

Adaptability analysis: The main purpose of the preferred adaptability 
values is to express the wishes of the software engineer, to label the 
alternative models and/or to order the models, if appropriate. The software 
engineer has always an access to the definition of the priority values and the 
corresponding object models. The software engineer may select various 
schemes for calculating the adaptability value of a model such a summing up 
the values of tuples, giving a weighting value per model, etc. What is more 
important is the explicit and relative consideration of the adaptability factors 
of concepts and their effect to the overall model. If the software engineer 
cannot decide on the adaptability of a concept, he/she may leave it 
undefined. 

Performance analysis: In this chapter we have presented a simple 
technique to analyze the relative performance of the alternatives. There are a 
great number of successful techniques for performance analysis and the 
software engineer should adopt the appropriate one. However, relative 
performance analysis is generally simpler than a detailed analysis of the 
system, since only the differences among the models have to be considered. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 253 

8. CONCLUSIONS 

There are, in general, many correct implementations of a software design 
problem, and each implementation may differ from the other with respect to 
its quality factors. Software is rarely designed for ultimate quality, but it is a 
compromise of multiple considerations. For example, generally the 
adaptability and performance factors of a software system have to be 
balanced. To achieve these objectives, in this chapter the following four 
requirements were considered important: First, to be able to compare the 
design alternatives, the space of the alternatives must be determined. 
Secondly, the alternatives must be ordered with respect to their quality 
factors. Thirdly, the software engineers must be able to select among the 
alternatives based on the requirements. Finally, the quality factors must be 
balanced with respect to each other. 

In section 3, a process has been presented to explicitly reason about the 
adaptability factors of the design alternatives at various abstraction levels. In 
section 4, a simulation technique was used to determine the relative time 
performance factors of the design alternatives. To this aim, it was found 
sufficient to build a single simulation model. In section 5, we have analyzed 
six design alternatives from their adaptability and performance viewpoints. 
We have shown that the adaptability and time performance factors of the 
software systems can be balanced with respect to the requirements. 
Comparing these quality factors was also educational for us and our findings 
were summarized in section 5. 

The techniques presented in this chapter can be considered as a special 
form of Relational Algebra, which we termed as Design Algebra. We think 
that the algebraic techniques provide a formal foundation and enable 
implementation of suitable tools. We also think that the proposed technique 
is practical since it can be easily integrated with current object-oriented 
methods. Rule-based heuristics are particularly useful in selecting and 
evaluating the alternatives. The algebraic techniques can be extended to 
other quality factors as well. We are currently working on reuse factors of 
design alternatives. 

ACKNOWLEDGEMENTS 

This research has been supported by various organizations including 
Siemens-Nixdorf Software Center, the Dutch Ministry of Economical affairs 
(SENTER), the Dutch Organization for Scientific Research (NWO, 
'Inconsistency management in the requirements analysis phase' project), the 
AMIDST project, and by the 1ST Project 1999-14191 EASYCOMP. 



www.manaraa.com

254 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

9. REFERENCES 

1. M. Ak~it, Separation and Composition of Concerns. ACM Computing Surveys 28A(4), 
December, 1996. 

2. M. Ak~it, B. Tekinerdogan, F. Marcelloni, & L. Bergmans. Deriving Object-Oriented 
Frameworks from Domain Knowledge. In Building Application Frameworks: Object­
Oriented Foundations of Framework Design, Fayad et al. (eds), Wiley, 2000. 

3. G. Arrango. Domain Analysis Methods. In Software Reusability, Schafer, R. Prieto-Diaz, 
and M. Matsumoto (Eds.), Ellis Horwood, New York, New York, pp. 17-49, 1994. 

4. S.R. Chidamber, & C. F. Kemerer. A Metrics Suite for Object-Oriented Design. IEEE 
Transactions on Software Engineering 20(6): 476-93, 1994. 

5. C. Date. An Introduction to Database Systems. Addison-Wesley, 1986. 
6. I. Jacobson et al. Software Reuse. ACM Press, New York, 1997. 
7. G.Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, 1.-M. Loingtier & J. Irwin, 

Aspect-Oriented Programming. ECOOP '97 Conference Proceedings, LNCS 1241, , pp. 
220-242, Springer-Verlag, 1997. 

8. A. M. Law & W. D. Kelton. Simulation Modeling & Analysis. Second Edition, McGraw­
Hill, Inc., 1991. 

9. CoL. Lee, G. Iyengar & S. Kota. Automated Configuration Design of Hydraulic Systems. 
In: Artificial Intelligence in Design'92, (Ed) 1. S. Gero, pp. 61-82, Kluwer Academic 
Publishers, 1992. 

10. KJ. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with 
Propagation Patterns. PWS Publishing Company, Boston, 1996. 

11. W. F. Opdyke. Refactoring Object-Oriented Frameworks. University of Illinois, Urbana 
Champaign, 1992. 

12. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical Recipes. 
Cambridge University Press 1986, pp. 191-199, 1986. 

13. 1. Rumbaugh, M. Blaha, W. Premeriani, F. Eddy, & W. Lorensen. Object-Oriented 
Modeling and Design. Prentice Hall, 1991. 

14. R. Sedgewick. Algorithms. Addison-Wesley, 1988. 
15. C. U. Smith. Performance Engineering of Software Systems. Addison-Wesley, 1990. 
16. P. Steyaert, C. Lucas, K. Mens, & T. D'Hondt. Reuse Contracts: Managing the Evolution 

of Reusable Assets. OOPSLA '96 Proceedings, ACM SIGPLAN Notices, pages 268-285, 
ACM Press, 1996. 

17. B. Tekinerdogan. Synthesis-Based Software Architecture Design. PhD Thesis, Dept. of 
Computer Science, University of Twente, March 23, 2000. 

18. B.Tekinerdogan & M. Ak~it. Adaptability in object-oriented software development: 
Workshop report, In M. Muhlhauser (ed),Special issues in Object-Oriented 
Programming, Dpunkt, Heidelberg, 1997. 

19. C. Tong & D. Sriram. Introduction. In: Artificial Intelligence in Engineering Design, 
Vol. 1, (Eds) C. Tong & D. Sriram, pp. 1-53, Academic Press, 1992. 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 

APPENDIX MODELS 

MODELl 
All tuples are fixed; no practical use of inheritance. 
Tuple: 

CObjeetAdaptL;b,ary = ( (CL, FX, Library), (CL, FX, Collection), (CL, FX, LinkedList), (CL, FX, 

OrderedCollection), (CL, FX, Array), (ATm, FX, collectionltems), (OPn" FX, sort), (ATe, FX, 

RN), (OPn" FX, Read), (OPn" FX, Write), (OPn, FX, CR)) 

Adaptability degree: 0 
Performance Degree: 40 (measured value 58,=-5;::m=sL) __ --, 

MODEL 2 

Array 

collectionllems 

sort{) 
read{ ) 
write{) 

LinkedList 

collectionltems 

sort{ ) 
read{) 
write{) 

CR run-time adaptable, operations are non-virtual. 
Tuple: 

OrderedColiection 

collectionltems 

sort{ ) 
read{ ) 
write{) 

255 

CobjectAdaptLibrary = ( (CL, AD, Library), (CL, AD, Collection), (CL, FX, LinkedList), (CL, FX, 

OrderedCollection), (CL, FX, Array), (ATm, AD, collectionltems), (OPn, FX, sort), (ATe, FX, 

RN), (OPn, FX, Read), (OPn, FX, Write), (OPv, AD, CRI), (CL, AD, CRC/ass)) 

Adaptability Degree: 11 
Performance Degree: 27 (measured value 910ms) 

I Collection I I Library L-.. 
collection Items I 
I I 

~ 
I I I 

Array LinkedList OrderedColiection 

collection Items collectionllems collection Items 

sort{ ) sort{ ) sort{ ) 
read{ ) read( ) read( ) 
write() write() write{) 
changeCR{ ) changeCR{ ) changeCR( ) 

9 9 J 
I CRClass I I CRClass I I CRClass I 

ICR() I ICR() I ICR() I 



www.manaraa.com

256 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

MODEL 3 
CR run-time adaptable, sort is fixed but inherited. 
Tuple: 

CObjectAdaplLibmry ~ ((CL, AD, Library), (CL, AD, Collection), (CL, FX, LinkedList), (CL, FX, 

OrderedCollection),(CL, FX, Array), 

(ATm, AD, collectionItems), (OP", FX, sort), (ATc. FX, RN), (OP" AD, Read), (OP" AD, Write), 

(OP" AD, CR), (CL, AD, CRClass)) 

Adaptability Degree: 17 
Performance Degree: 18 

Collection 

~_ Library h collectionltems 

sort( ) 

y 
I I I 

Array LinkedList OrderedColiection 

collectionltems collectionltems coliectionltems 

read! ) read! ) read! ) 
write! ) write!) write! ) 
changeCR( ) changeCR( ) changeCR( ) 

? ? Y 
I CRClass CRClass I I CRClass 

ICR!) CR() I ICR() 

MODEL 4 
Sort is fixed but inherited. All other methods are virtual. 
Tuple: 

I 

I 

CObjectAdaplLibrmy ~ ( (CL, AD, Library), (CL, AD, Collection), (CL, FX, LinkedList), (CL, FX, 

OrderedCollection), (CL, FX, Array), (ATm, AD, collectionItems), (OP", FX, sort), (ATe, FX, 

RN), (OPv" AD, Read), (OP,,, AD, Write), (OP"" FX, CR)) 

Adaptability Degree: 9 
Performance Degree: 19 

Collection 

I 
Library b-- coliectionltems 

sort( ) 

y 
l I I 

Array LinkedList Ordered Collection 

collection Items collectionltems coliectionltems 

read( ) read( ) read( ) 
write ( ) write ( ) write ( ) 
CR() CR() CR() 



www.manaraa.com

DERIVING DESIGN ALTERNATIVES BASED ON QUALITY FACTORS 

MODEL 5 
Sort and CR run-time adaptable. All others methods are virtual 
Tuple:. 

CObj"tAdapWbmry = ( (CL. AD, Library), (CL, AD, Collection), (CL, FX LinkedList), (CL, FX 

OrderedCollection), (CL, FX Array), (ATm, AD, collectionltems), (OP" AD, sort), (CL, AD, 

sortClass), (ATe, FX RN), (OP,,,AD, Read), (OP,,, AD, Write), (OP" AD, CR), (CL, AD, 

CRClass)) 

Adaptability Degree: 27 
Performance Degree' 12 

~ I 
Collection I 

t::==:=::j 
collection Items I 

y 
I I I 

Array LinkedList OrderedCollection 

colleclionllems collectionlterns collection Items 

sort( ) serle ) sOrl( ) 
read() read() (ead( ) 
writer) writer) writer ) 
CRt ) CRt) CRt ) 
changeSort( ) changeSort( ) changeSort( ) 
changeCR( ) changeCR( ) changeCR( ) 

? ~ ? ~ f \ 
I SortClass II Comparison II SortClass II Comparison II SortClass II Comparison I 

Isart( ) IICR( ) Iisart( ) IICR( ) sarti ) 

MODEL 6 
RN, CR, read and write run-time adaptable. Sort is fixed. 
Tuple: 

IICR( ) I 

257 

CObj,ctAdaptLibmry = ( (CL, AD, Library), (CL, AD, Collection), (CL, AD, LinkedList), (CL, AD, 

OrderedCollection), (CL, AD, Array), (ATm, AD, collectionltems), (OPv, FX sort), (OPv, AD, RN), 

(CL, AD, RNClass), (OP,,, AD, Read), (OP", AD, ReadClass), (OP", AD, Write), (OPy " AD, 

WriteClass), (OPv,AD, CR), (CL, AD, CRClass)) 

Adaptability Degree: 30 
Performance Degree: 16 (measured value l310ms) 

collection Items 

sort( ) 
read( ) 
writer) 
CRt) 
changeRN( ) 
changeCR( ) 
changeRead( ) 
changeWrite( ) 

collectionitems 

sart( } 
read( ) 
write() 
CRt) 
changeRN( ) 
changeCR( ) 
changeRead( } 
changeWrite( } 

OrderedCollection 

collectionltems 

sort( ) 
read( ) 
writer ) 
CRt) 
changeRN( ) 
changeCR( ) 
changeRead( ) 
changeWrite( ) 



www.manaraa.com

PART 3 

COMPONENTS 



www.manaraa.com

Chapter 9 

APPLICATIONS = COMPONENTS + SCRIPTS 
A tour of Piccola 

Franz Achennann and Oscar Nierstrasz 
Software Composition Group, lAM, Institute of Computer Science and Applied Mathematics, 

University of Bern, Neubriickstrasse 10, CH-3012, Bern, Switzerland Email: {acherman, 

Oscar.Nierstrasz}@iam.unibe.ch, www: http://www.iam.unibe.ch/~scg/ResearchlPiccolai 

Keywords: Composition Language, Composition Style, Forms, Context, Scripting, Piccola 

Abstract: Piccola is a language for composing applications from software components. It 
has a small syntax and a minimal set of features needed for specifYing different 
styles of software composition. The core features of Piccola are communicating 
agents, which perform computations, and forms, which are the communicated 
values. Forms are a special notion of extensible, immutable records. Forms and 
agents allow us to unifY components, static and dynamic contexts and 
arguments for invoking services. Through a series of examples, we present a 
tour of Piccola, illustrating how forms and agents suffice to express a variety of 
compositional abstractions and styles. 

1. INTRODUCTION 

Piccola is intended to be a general-purpose language for software 
composition. Whereas existing programming languages appear to be suitable 
for implementing software components, and many scripting languages and 
fourth-generation languages have been developed to address the needs of 
particular component models, there has been relatively little work that 
attempts to develop a generalized approach that may span various 
architectural styles and component models. 

We have argued elsewhere [1][24] that most object-oriented methods 
typically do not lead to pluggable component architectures (mainly because 
reuse is considered too late in the lifecycle) and that the resulting software 



www.manaraa.com

262 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

systems can be hard to maintain and understand because they do not make 
the run-time architecture explicit (the source code describes the classes, not 
the objects). To address this problem, we have proposed a conceptual 
framework for software composition that can be summed up as: 

Applications = Components + Scripts 

Components must conform to architectural styles [26] that determine the 
plugs each component may have (i.e., exported and imported services), the 
connectors that may be used to compose them, and the rules governing their 
composition. Scripts define specific connections of the components. 
Additionally, glue abstractions may be required to bridge architectural styles, 
and adapt components that have not been designed to work together, and 
coordination abstractions may be required to manage dependencies between 
concurrent and distributed components. 

Piccola's runtime model consists of communicating agents. Scripts specify 
the behaviors of these agents. Agents invoke services and compose forms. 
Agents live in a context that contains the known services and forms for an 
agent. In this text we will show how components can be scripted in a 
declarative way by means of a style which defines a kind of "component 
algebra." Consider, for example, the well-known style of pipes and jilters: 

Components: 

Connectors: 

Rules: 

Table 1: Pipes and filters 

File, Stream, Filter 

<, I,> 

Filter < File --7 Stream 

Files and Filters are external components 

Three kinds of pipe operators 

A File piped into a Filter yields a Stream 

Stream 1 Filter --7 Stream A Stream piped into a Filter is still a Stream 

Stream> File --7 nil A Stream can be piped into a File 

Pipes and filters are "algebraic" in the sense that the composition of two 
components yields another component. 

Unlike scripting languages that offer only a fixed set of compositional 
styles, Piccola allows you to dejine your own styles for different application 
domains. Rather than develop Piccola as an extension to an existing 
language, we felt it was important and necessary to emphasize a separation 
of concerns between component implementation and component 
composition. Our goal is to identify a well-founded set of features necessary 
and sufficient for specifying software compositions as scripts, while 
supporting an open-ended set of architectural styles. Piccola adopts a layered 
approach to achieve this goal. External components export services 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 263 

transparently to each layer. For example, the abstract machine layer sees 
these services as ordinary channels and agents. 

!Applications Components + scripts 

!Architectural styles Streams, events, GUI composition, ... .tJ 
s:: 

........ <ll 

Core libraries basic coordination abstractions, basic obiect model (:i s:: 
f () 

riccola language Services, operator syntax, nested forms, built-in types <ll ~ ...... 

~ () 

I1tL abstract machine agents, channels, forms <..l 

The bottom level of the Piccola system provides an abstract machine in 
which agents asynchronously communicate forms through shared channels. 
This abstract machine implements the rcL-calculus [13], a variant of the 
polyadic rc-calculus [15] in which forms are communicated instead of tuples. 
The innovation at this level is the introduction of forms, which are 
immutable, extensible records (sets of bindings from labels to channels). 
Technically speaking, communicating forms rather than tuples does not alter 
the expressive power of the rc-calculus, but it makes it much simpler to 
express higher-level abstractions in Piccola [25]. This simple foundation 
allows us to reason about complex and concurrent interactions using a well­
developed formal model, and guarantees that the semantics of higher-level 
abstractions can always be precisely explained in terms of simple 
interactions. 

The next layer defines the Piccola language syntax and semantics. We 
introduce primitive values, like numbers and strings, higher-order 
abstractions over agents, forms and channels, and nestedforms. Abstractions 
and nested forms are defined simply by translation to the lower level model 
using hidden intermediate channels and agents. At this level we already 
begin to appreciate the expressive power of forms. Forms represent: 

• Interfaces to components. Forms encapsulate a set of named services 
exported to clients. 

• Arguments. Forms provide keyword-based arguments for services. 
• Contexts. The static context represents all known services and 

components for any statement. The dynamic context collects servIces 
and capabilities that are passed from callers to callee. 

• User-defined service. 

As forms are immutable, operations on forms yield new forms with an 
enriched or reduced set of services. It is not possible to modify forms, 
thereby breaking by accident other agents using this form or component, but 
only to create new forms. We can see a form as a kind of "primitive object" 
with public and private features, but without any explicit notion of classes or 



www.manaraa.com

264 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

inheritance. More elaborate object models can be encoded directly in 
Piccola. Piccola permits form labels to be accessed as overloaded infix 
operators, which is convenient for expressing compositional styles. 

The third layer defines libraries of basic composition abstractions, 
including control abstractions (e.g., if-then-else, try-catch), coordination 
abstractions (e.g., blackboards, futures), and other utilities, such as an 
interface to the Java world. The interface wraps Java objects and represents 
them as forms so that Piccola agents can access them. 

At the fourth layer, libraries of architectural styles may be defined, such 
as push-flow or pull-flow streams, GUI composition, and GUI event 
composition. This is done by implementing connectors for such a style as 
infix operators on components. A style may also define coordination 
abstractions to manage interactions between components, and glue 
abstractions to adapt external components to a particular style, or possibly to 
bridge gaps between different styles [6][27]. 

Finally, application programmers can script applications using the 
connectors of a particular style and the glue abstractions to use external 
components. 

This paper is structured as follows. The next section presents an example 
that illustrates the top-level view of a Piccola script. Then, in sections 3, 4 
and 5, we present the Piccola language layer, and describe respectively, 
forms, agents and contexts. In section 6 we show how Piccola can be used to 
define a simple architectural style, and in section 7 we show how classes and 
mixins can be scripted. Finally, section 8 discusses related work and section 
9 concludes this paper. 

2. SCRIPTING COMPONENTS 

In this section we present a small example of a Piccola script that uses 
styles for GUI composition and GUI event composition. The specification of 
event style itself is presented later in section 6. The reader should not worry 
too much about details of the mechanics of the script on a first reading, but 
pay attention instead to how Piccola is used to develop a high-level, 
declarative view of how this applications composed. The same application 
written directly in an object-oriented language would typically be more 
procedural, and emphasize low-level wiring of observers and observables 
[5]. The Piccola script, on the other hand, expresses the wiring by using 
compositional operators defined as library abstractions supporting an archi­
tectural style 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 265 

Figure 2: Duke scripted in Piccola 

The script "duke. picl" in figure 2 uses an event style to wire the events 
and illustrates how the graphical layout is scripted. It also coordinates 
several agents. Running the script, a frame with Java's Duke appears (see 
figure 1). When we click on the wave button, duke waves at the speed 
controlled by the scrollbar on the left. When we click on Duke himself, he 
complains, issuing the message "ouch." After a short delay, the message 
disappears. 

We now look at the individual parts of the script and identify the forms 
and agents when necessary: 

1. We load a file "nawt" which defines several services we will use. The 
keyword root denotes a special form that represents the static context in 
which duke. picl is evaluated (see section 5). load () reads a set of 
definitions in a Piccola library script and returns a form containing those 
bindings. We then extend the static context by simply redefining root to 
be root extended by the result of load () . . 

2. Now our extended root context contains the service awtComponent 

defined in the loaded script. This service instantiates new A WT 
components and wraps them according to our style. We use it to create 
the duke component, a button, and a scrollbar. The form returned by 
awtComponent can be thought of as a kind of "primitive object" 
providing the service set (amongst others). This service allows us to 
send a form containing some properties. For example, we set the label of 
the waveButton component by invoking set with the argument form 
Label = "wave". Note that set may be invoked either with a parame­
terized expression on the same line, or by passing an indented form on 
the subsequent lines. Either syntax can be used at any time. The 
arguments passed to set will cause these properties to be updated in the 
wrapped Java object. We do not change any default property of duke. 



www.manaraa.com

266 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

# File: duke.picl 
# 1. load nawt services 
root = (root, load("nawt")) # use event and AWT wrappers style 

# 2. create AWT Components 
duke = awtComponent(ldemos.duke.Duke") 
waveButton = awtComponent(ljava.awt.Button") .set(Label=lwave") 
speedScrollbar = awtComponent(ljava.awt.Scrollbar") .set 

Minimum = 1 
Maximum = 800 
Value = duke.getSpeed() 

# 3. do the event wiring 
speedScrollbar ? Adjustment 

do: (duke.set(Speed = speedScrollbar.getValue())) 
waveButton ? Action(do: duke.wave(val = 1)) 

# 4. click on Duke 
counter = load ("counter") .newCounter(O) 
sleep() = javaClass(ljava.lang.Thread") .sleep(val 
duke ? MouseClicked 

do: 
duke.set(Message "ouch") 
counter. inc () 
sleep () # sleep 2 seconds 

2000 ) 

if (counter.dec() <= 0) # if this was the last click 
then: duke.clearMessage() 

# 5. arrange components in a panel 
panel = newBorderPanel 

center = newBorderPanel 
north = Components + waveButton 
center = duke 

west = speedScrollbar 

# 6. add panel into a frame and display it 
exit() = javaClass(ljava.lang.System") .exit(val 0) 
frame = awtComponent(ljava.awt.Frame") .set 

Title = "This is duke" 
frame. add (val = panel.java, type = Ijava.awt.Component") 
frame? WindowClosing(do: exit()) 
frame. pack () 
frame. show () 

Figure 2: Duke script 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 267 

3. N ext, the events are wired using a compositional notation with infix 
operators, (see table 2). The style defines a set of event types, like 
Adjustment and Action. Each event type is modeled as an abstraction 
that takes a response (a form containing a do service) as a parameter and 
yields a listener. The resulting listener may be bound to a component 
with the infix? operator. 

Table 2: GUI event composition style 

Components: C 
E 

Connectors: 

Rules: 

R 
L 

(), ? 
E(R) -7 L 

C?L~ 

o 

GUl-Component 

Event type 

Response 

Listener 

Compose an event type with a response to get 
a listener 
Connect a component to a listener 

For example, when the scrollbar is adjusted, the new speed value is set 
in the duke component, whereas clicking on the button causes duke to 
wave. 

4. When we click on duke, he displays a complaining message. The 
message disappears after a short delay. Each time the user presses the 
mouse on duke (MouseClicked) an agent runs the code given in the 
response. We do not see the agent directly, but we specify the script 

(do: duke. set (Message=" ouch", ... ) he executes. The agent runs in 
a context that contains bindings for the forms duke and counter, as well 
as the services sleep and if. 

Note that the bindings returned by load ("counter") are not used to 
extend root. We directly use the exported service newCounter () to 
construct a thread-safe counter. 

s. The graphical layout uses a different composition style from the event 
wiring. We use the service newBorderPanel exported by "nawt." We 
define a new panel by invoking service newBorderPanel, which creates 
a new Java panel with a border layout manager. The argument is a form 
specifying sub-components with constraints north, south, west, east, or 
center, according to the border layout manager of Java [7]. A sub­
component may itself be an instance of newBorderPanel or even a list 
of components. In this case these components are arranged using a flow 
layout in an inner panel. 



www.manaraa.com

268 

Components: 

Connectors: 

Rules: 

SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Table 3: GUI Composition style 

C 
List 

+, newBorderPanel 

List + C 0 List 

GUI-Component 

List o/Components 

Builds a new list with additional element 

List + List 0 List concatenate lists 
NewBorderPanel(Form) layout Components in the [arm 

This determines the stretching properties of the sub-components. 
Component lists are built up by starting with an empty list (i.e. 
Components) and adding widgets using the + operator. Glue code maps 
the interfaces of Java objects to fit the style. Note that GUI composition 
in Piccola using an appropriate style is more declarative than what one 
would typically write in a conventional object-oriented language. 
Contrast it with the code fragment necessary to achieve the same layout 
in Java: 

Panel panel = new Panel (new BorderLayout()); 

Panel InnerPanel = new Panel (new BorderLayout()); 

Panel buttons = new Panel(); II using the default 

flow layout 

buttons.add(waveButton) ; 

innerPanel.add(buttons, BorderLayout.NORTH); 

innerPanel.add(duke, BorderLayout.CENTER); 

panel.add(innerPanel, BorderLayout.CENTER); 

panel.add(speedScrollbar, BorderLayout.WEST); 

6. Finally, the panel is put into a new frame, which is displayed. As the 
Piccola AWT style uniformly wraps A WT components from Java, we 
can use methods pack ( ), show () etc. directly from the underlying peer 
Java objects. 

This simple example illustrates several important points about Piccola: 

It Piccola syntax is extremely lightweight. There are only four keywords 
(root, dynamic, def and return) and six reserved operators . 

., Forms are ubiquitous in Piccola. They are used to represent interfaces to 
components, arguments for services, and contexts for agents. 

• Although Piccola is not designed as a Bean scripting language, one can 
use it to compose Beans - or any other kinds of components, for that 
matter - by defining a suitable architectural style. 

4& When styles are defined as "component algebras," the resulting scripts 
are highly declarative and make the wiring of components explicit. 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRlPTS 269 

It In the next three sections, we give an overview of all the features of 
Piccola, namely that of forms, communicating agents, and contexts. 

3. WHAT IS A FORM? 

We have identified forms as a central concept needed for composition. A 
form is a mapping of labels to values. The empty form has no labels. Forms 
in Piccola are themselves values and may therefore be nested. Many data­
structures have a natural embedding as forms. Forms are written as 
sequences of bindings, separated by commas or new-lines and structured 
using brackets or indentation: 

baseForm = 
Text "foo" 
Name Text 
Size = (x = 10, Y = 20) 

The form baseForm contains three labels: Text, Name, and Size. The 
nested form baseForm.Size has labels x and y. Projection is used to fetch 
elements of a form. For example, the projection Form. Size. x yields 10. 

Forms are built as a sequence of bindings. Each individual binding is 
added to the form it follows. At the same time, each binding also acts as a 
declaration for subsequent code. Thus, the identifier Text in the binding 
Name is bound to the string" foo" in the previous line. Forms and sequences 
of statements are unified in Piccola. The whole assignment defines a nested 
form bound to the label baseForm in the global form root. 

3.1 Extending Forms 

New forms can be built by extension. A form, or more precisely the list of 
its bindings, may be concatenated with other bindings, which yields a new 
form. We can extend baseForm with a binding for Color: 

coloredForm = 
baseForm 
Color = "green" 

Now the coloredForm has a label Color in addition to the labels of 
baseForm. We cannot detect in the extended form how and in what order the 
labels where added. Note that baseForm remains unchanged. 



www.manaraa.com

270 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Bindings may also be overridden by new bindings. Clients using an 
extended form will only have access to the most recent binding for a label. 
The following example makes a new form with a modified Size: 

modForm = 
baseForm 
Size = (baseForm.Size, x = 15) 

This extension makes only minimal assumptions on the labels in 
base Form. It only assumes the presence oflabel Size in baseForm. We add a 
binding for a new Size. The new size itself is an extension of Size in the 
original form with a overridden label x. Note that this extension would also 
work if the original size would contain different labels, say for example three 
parameters x, y, and z. Then, our modified form would also contain these 
bindings with a modified x value. We heavily use this feature of forms in 
building reusable abstractions. 

It is also possible to extend one form by another, rather than just 
specifying individual labels to bind. This is an easy and compact way to 
have default parameters: 

withDefaults = 
Font = aSystemFont 
baseForm 

Now, we can project on Font in the form withDefaults. If baseForm 

already contains a binding for the label Font, this value is returned, 
otherwise the value aSystemFont is returned. 

Projecting on an unbound label is a type error and yields an undefined 
value. (Using this value generates an exception.) Type systems for 1tL and 
Piccola have been explored [13] but are not presented in this paper. 

3.2 Services 

In Piccola, we represent everything as a form. Literal values like strings 
or numbers are forms in the same way strings and numbers are objects in 
pure object-oriented systems like Smalltalk. Forms are used to encapsulate 
sets of services. Services themselves are also represented as forms. A service 
can be invoked with a function-call syntax, but is actually a form with a 
hidden label that gives access to an agent that represents it. (We use the term 
service rather than "function" to emphasize the fact that the invoked 
behavior is provided either directly or indirectly by an external component.) 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 271 

As everything is represented as a form, the arguments for invoking 
services are also forms. Therefore, they have in general only one argument. 

hello () = 
println("hello world") 

This statement defines a service and assigns it to the form hello. The 
body of the service consists of a call to another service: print In. When 
hello is invoked, it returns whatever println will return. 

An alternative can be used when no formal parameter is needed. We can 
omit the brackets and write: 

hello: print In ("hello world") 

The colon signals that the right hand side is an abstraction. The colon 
notation sometimes makes code easier to read. Drawing from our earlier 
example in section 2, the following two forms are strictly equivalent in 
Piccola: 

do: duke.wave(val = 1) 
dot) = duke.wave(val = 1) 

To see that a service is just a form, consider the following, equivalent 
statement: 

hello = \() = println("hello world") 

Here, the label he 11 0 is bound to the anonymous abstraction \ ( ) 
Anonymous abstractions are sometimes convenient for defining coordination 
abstractions, but we will rarely use them directly. Most of the time, a form 
with a do service is more convenient to use. 

External components export primitives services to Piccola, but higher­
level services can be scripted in Piccola. We therefore speak of the body of a 
service as its script. For example, the script of the hello service above is 

println("hello world") . 

When a service is invoked, an agent evaluates its script (also a form). The 
root context this agent runs in provides access to statically bound services 
(like load) and a dynamic argument that gets passed at invocation time. 



www.manaraa.com

272 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

We can extend services like any other form and, for example, add labels 
documenting their interface. Piccola makes no assumption about such 
additional labels. 

myhello = 
doc = "My hello world" 
hello 

There are several ways to invoke services. The argument form can be 
enclosed in brackets or given by indentation. The following alternatives all 
invoke a higher-order service if. When it is invoked with a boolean value as 
an argument, it returns a service taking as argument a form containing labels 
then or else. 

if (name == "main") 

then: hello () 

if (name == "main") (then: hello() 

branch 
branch 

if (name == "main") 

then: hello () 

# 

# 
# 

# 
# 

a one liner! 

curried: apply 
boolean branch is a 

service: 
apply cases 

As services are first class values, we could also directly bind he 11 0 to 
the label then: 

if (name == "main") 
then = hello # bind then to (form) 

# hello 

Boolean values are encoded as forms that provide a select servIce. 
This service either selects a true or false binding of its argument: 

true = (select(B) = B.true) 
false = (select(B) = B.false) 

Services in Piccola always take a single form as an argument. Since 
services are values, however, it is possible to define curried services (i.e., 
taking a single argument and returning a service). Consider the 
implementation of if as it is used above: 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 

if (Boolean) (Cases) 

withDefaults 
then: () 
else: () 

Cases 
Case = Boolean.select 

true = withDefaults.then 
false = withDefaults.else 

return Case() 

273 

# curried: same as: 

# if(B) = \(C) = ... 

# select a case 

# evaluate branch 

The service takes two forms as its arguments: Boolean and Cases. In the 
body of the service, we first provide Cases with default then and else. The 
defaults we supply are dummy services that return the empty form, written 
as (). Next, we use the boolean to select either the then case (the boolean is 
true) or the else branch. Finally we evaluate the case selected and return it 
as the result of the if service. 

What would happen if we omitted the return keyword in the above 
definition? Then the result of an application if (B) (C) would be a form 
containing not only the bindings returned by Case ( ), but also those of 
withDefaults and Case! The use of the keyword return ensures that only 
the value of the expression that follows is returned. All prior bindings are 
strictly local. This same mechanism can be used to build objects with private 
and public features. 

3.3 Operators 

Piccola supports user defined operators. Any sequence of operator 
characters like -,+, * ,=,! , ... represents an infix or prefix operator. As is 
usual in object-oriented languages supporting infix operators, such operators 
are treated as projections on their left-hand side component with the right­
hand side component as the argument. The label associated with the operator 
token has two underscores for infix and one for prefix-use in front of it. For 
instance: name == "main" is interpreted as name. _ == ( "main") . Identifiers 
may also be infix operators when they are enclosed in single backquotes as 
in 5 'mod' 3 which is 5. mod (3). Similar: - 4 is interpreted as 4. _ - () . 

Sequences of infix terms associate to the left, i.e. a I b I c is (a I b) I c 

or, equivalently, a._I (b) ._1 (c). 
Infix operators are used to syntactically present architectural styles in a 

more compositional or algebraical way, as illustrated by the example in 
section 2. 



www.manaraa.com

274 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

3.4 Scopes 

So far we have only seen simple bindings of labels to expressions using 
labels bound in previous statements. The right-hand side of a binding can 
never refer recursively to the label being bound. In practical applications, 
however, we often need recursive services and forms. The keyword def 

defines such a binding. In definitions, the right-hand side can refer to the 
identifier being assigned to, provided it is used within an abstraction: 

def fact(N) = 
if (N < 2) 

then: 1 
else: N * fact(N-l) 

While def is not surpnsmg for services, we also use it to construct 
fixpoints for plain forms. In this circumstance it allows us to define forms 
with a notion of self: 

def cout = 
« (X) 
print (X) 

return cout 

nl = "\n" 

cout « "Hello World" « nl 

Evaluating the term cout « X prints x and returns couto Therefore, we 
can write sequences of such terms as in C++. 

Note that in each of these examples the recursion occurred within an 
abstraction. The following examples, by contrast, are not sound in Piccola: 

def silly = (a = silly) 

def sillier = sillier 

and result in run-time errors. The agent that builds the fixpoint reads it 
before it is correctly set. The following service is uninteresting, but sound: 

def sillyButOK() = sillyButOK 

The def keyword can also be used to define mutually recursive services. 
When two or more services should refer each other, they can be enclosed in 
a common, recursive scope: 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 

def myscope = 
a () = 

myscope . b ( ) 

b () = 

myscope . a () 

275 

# call b in myscope 

Note that we could equally omit myscope in the body of service b () to 
call to a (). 

4. COMMUNICATING AGENTS 

The semantics of Piccola is given in terms of communicating agents. 
There are two predefined abstractions necessary to control these agents: one 
to asynchronously evaluate a do service by a new agent and one to 
synchronize running agents. 

The run primitive evaluates the do service of a form as a separate agent. 
The result of run ( ... ) is the empty form. This result is returned in parallel 
to starting the new agent. The term newChannel () creates a new channel. 
Channels provide atomic send and receive services to communicate forms. 
The sender cannot detect when and whether the value sent is received by a 
communication partner. Receiving a value from a channel blocks unless 
someone has sent a form to it. If one or more forms are sent, then an 
arbitrary one of them is received. There is no ordering on the values 
communicated along a channel. The following script creates a channel ch 

and starts two agents that communicate a form along it: 

ch = newChannel() 

run (do: ch.send("a form")) 

run 
do: 

v = ch.receive() 
println("I received" + v) 

Running this script, the second agent will print out I received a form. 

The library script "pil" provides a style that makes programming with 
channels and agents more convenient, and mimics the operators of the 
lower-level pL machine. The script redefines newChannel and equips new 
channels with infix operators t, ? and ?* instead of send and receive. The 
operator? * attaches a "replicated agent" to the channel. 



www.manaraa.com

276 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Table 4: pil-style 

Components: C 

A 

Channels 

Agents 

Connectors: !, 7, 7* Output, input, replicated input 

Send form along channel C 

Receive form and run abstraction 

Rules: C ! Form ---7 A 

C 7 Abstraction ---7 A 

C 7* Abstraction ---7 A Multiple receive from channel. 

A replicated agent behaves like an endless supply of agents, always ready 
to receive another message. These operators send and receive forms in their 
own agents. Using the pil-style, the above script becomes: 

root = (root, load ("pil") ) # redefines newChannel 
ch newChannel () 
ch "a form" # send the string 
ch ? \ (v) = # receive a value, then 

println ("I received " + v) # run the service 

The two predefined abstractions run and newChannel are enough to 
recover the expressive power of pL. For example, a stop service can be 
implemented as: 

stop () = 
newChannel() .receive() # will never receive 

# anything 

Calling stop () will never return and therefore stop the client agent. 
Another useful concurrency abstraction is one that evaluates two 

abstractions in parallel. It returns the result of one of the two passed 
abstractions. When both abstractions terminate, either result is returned. 
However, when we know that only one branch terminates and the other 
stops, the result of OrJoin is uniquely determined: 

OrJoin(X) = 
ch = newChannel() 
run (do: ch.send(X.left())) 
run (do: ch.send(X.right())) 

return ch.receive() # blocks unless there is 

# one result 

Here, we run two agents in parallel. The two agents execute the left and 
the right abstraction given. The service ch. recei ve () blocks, unless one 
value is sent on it. Once a value is sent to the channel, this value is returned. 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 277 

In the next section, we will use these services to implement an exception 
handling mechanism within Piccola. 

OrJoin and stop are examples of coordination abstractions. For example, 
OrJoin is used to coordinate two agents such that only one agent returns a 
result. 

5. CONTEXTS 

When an agent evaluates a script, it may make use of services defined in 
the current context (or "environment"). Piccola models contexts explicitly as 
forms. Since contexts are therefore first-class values, one can implement 
various abstractions to support modules and packages. In contrast to Piccola, 
most languages provide a predefined and fixed way to import modules and 
look up imported services. 

The special form root denotes the (static) context in which identifiers are 
looked up. Instead of writing: 

print("Hello") 

we could equally say: 

root .print ("Hello") 

Similarly, bindings also extend the root form for subsequent statements. 
It is also possible to assign any form as new root or to use root as an ordinary 
form. For example, load () locates a script and evaluates it. It returns the 
form defined by the script. Assume we have a script "hello. picl" with the 
contents: 

# File: hello.picl 
hello: println("This is the hello script") 

We can now import the bindings into the root and use hello directly: 

root = (root, load("hello")) 

hello () 

# extend our root 

# wi th hello 
# call hello 

or we can load the script and keep it in a separate form. This prevents 
cluttering up our root namespace: 



www.manaraa.com

278 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

x = load("hello") 
x.hello () 

# bind hello to x 
# and use it 

When the Piccola run-time system is initialized, root contains the 
services of the basic Piccola composition abstractions. 

5.1 Dynamic Contexts 

Statically compiled languages typically use static (lexical) scoping 
whereas dynamically compiled and interpreted languages often use dynamic 
scoping or a combination of static and dynamic scoping. Piccola is statically 
scoped, but offers dynamic scoping on demand. Although static scoping is 
good enough for most purposes, it turns out that certain kinds of 
coordination and control abstractions are next to impossible to define 
without dynamic scoping. 

As an example, consider exception handling. Most languages that provide 
exception handling as a built-in construct allow an exception to be raised in 
the context of some service provider, and thereby cause an associated 
exception handler of the client to be invoked. In languages that do not 
provide exception handling, it can be very difficult to simulate. Let us see 
now how such an abstraction can be defined in Piccola by explicitly passing 
dynamic contexts between agents. 

An example application is the import service, which is defined as: 

import (F) = 
x = findFile(F.name) 
if (isEmpty (x) ) 

then: raise("Cannot locate Script: II + F.name) 
# otherwise x points to a valid file. We return its 

# contents: 
return try 

do: builtinLoad(x) (F.context, scriptLocation x) 
catch (E) : 

raise (IIError in Picclet II + x + "\n" + E) 

Import tries to find a given file. When this file cannot be located, it raises 
an error. Otherwise, the location x is read and executed. The service 
buil tinLoad loads, parses, and executes the script at location x. It is 
possible that this process raises an error. This error is caught and reported to 
the user. The service builtinLoad (x) returns a anonymous abstraction 
containing the script at x as its body and root as its argument. We invoke 
this context with the context passed (F. context) extended with the location 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 279 

of the script itself. When builtinLoad returns successfully, import returns 
the contents of the file. 

Observe that try and raise are normal abstractions, whereas do and 
catch are ordinary labels in the argument to try. Here are the 
implementations of try and raise: 

try (block) = 
exception = newChannel() 
result = OrJoin 

left: 
e = exception.receive() 
return block.catch(e) 

right: 
raise(e) = # define a local raise 

exception. send (e) 
stop () 

# abstraction 

dynamic = (dynamic, raise = raise) 
return block.do() 

return result 

raise(E) = # use dynamic raise 
dynamic. raise (E) 

Let us first look at the body of try. It creates two agents and waits for 
one of them to terminate. We have already seen OrJoin and stop in section 
4. The right agent runs the do service of the argument to try. This service 
may terminate normally, causing the agent to return a result, or it may raise 
an exception, and transfer control to the left agent. The left agent blocks 
and waits if an exception is raised. If so, it evaluates the catch service of the 
argument to try. Otherwise it does nothing. 

The difficulty here is that the client's do service knows nothing about the 
exception channel we want to use to coordinate the two agents. The solution 
is to define a local raise abstraction that will signal the exception and stop 
the right agent. This raise abstraction is injected into the dynamic context 
made available to the do service. When the do service calls the global raise 

abstraction, it in turn calls the dynamic one, and the right thing happens. 
Whenever a service is called in Piccola, the form dynamic is passed 

implicitly together with the actual parameter. If the client has extended its 
dynamic context with any additional services, these will then be available to 
the called abstraction. 

5.2 Passing the Dynamic Context 

For readers with some background in the n calculus, it may be helpful to 
have a closer look at how services are invoked. For that purpose, we show 



www.manaraa.com

280 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

the protocol that is used by service invocations. This protocol can be 
implemented nicely on top of Piccola using agents and channels. A service 
becomes a channel together with a replicated agent that implements its body 
and returns a result. An invocation consists in communicating a dynamic 
context to this agent along the service-channel. This context will contain the 
argument (args) and a result channel. The replicated agent will send its 
result along that result channel. 

root (root, load("pil")) 

fact newChannel() 

fact 7* \ (Dynamic) = 
N = Dynamic.args 

if (N > 1) 
then: 

# invoke fact (N-l) : 
h = newChannel() 
fact ! (Dynamic, args 
h 7 \ (Result) = 

# redefines 

# newChannel 
# the service channel 

# the service body . .. 
# Assign argument 

# form 

# factorial: 

# the result channel 
= (N - 1) ,result = h) 

Dynamic.result ! (N * Result) 

else: 

Dynamic.result ! 1 

Note that we use our previously mentioned pil-style. In the code, we use 
the identifier Dynamic instead of the Piccola keyword dynamic. Observe the 
invocation Offact (N-l): 

<9 We first create a reply channel h. 
II We then send an invocation to the service channel (fact). The 

invocation consists of the context for the agent responsible to evaluate 
the service. The context at least contains the argument form and the 
result channel. 

® We receive the result on the reply channel h. Once the service agent 
delivers a result, we fetch it and continue. 

An invocation closely corresponds to the responsibilities the agent 
implementing the service has. The service is modeled by a replicated agent 
receiving invocations. An invocation consists of a form. The arguments are 
by convention bound by label args, the result channel is bound by label 
result. The result is returned by sending it along the result channel, from 
where the client will pick it up. 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 281 

6. IMPLEMENTING STYLES 

This section presents the implementation of the event composition style 
used in section 2. Participants transmit or receive pieces of information in 
response to events. Components that emit events are called informers, those 
that receive them are called listeners [2]. 

We show code to glue the services provided by objects of the Java AWT 
Event framework to the event composition style of table 2 that can be used 
as: 

javaComponent ? EventType(Response) 

The? with a given event type connects a Response to an event within 
the Java component. A Response is a form with a do service. 

6.1 Interfacing to Java Components 

The low-level bridge to Java objects from Piccola is done using the 
predefined abstractions j avaClass and j avaObj ect. These generic glue 
abstractions create Java objects and return forms giving access to the public 
methods of them. The methods are invoked like any other service but the 
arguments are given as nested forms with labels valor valO, vall, val2, 
etc. since arguments for Java are tuples instead of being keyword based. For 
overloaded methods, we must also give the type of the arguments in order to 
select a unique method implementation in Java. 

The Piccola Java interface also provides some generic listener classes, 
like the class pi. piccola. bridge. GenericActionListener. These classes 
allow us to call Piccola services from Java. The generic action listener class, 
for example, implements the Java interface 
java. awt. event .ActionListener. An action listener that prints the events 
is created by: 

LC = 
javaClass(lpi.piccola.bridge.GenericActionListener") 

listener = LC.new 
val = dynamic 
vall = (actionPerformed = print In) 

The constructor for the listener class requires two parameters, the first is 
the dynamic context which will be passed to the listener service, in case the 
listener service makes use of services in the dynamic context. We need to 
pass this context explicitly, since Java does not offer a notion of context. The 
second parameter contains an abstraction to which the event is delegated. 
The handler for action listeners must be bound by the label 



www.manaraa.com

282 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

actionPerformed. The Java constructor for GenericActionListener is 
given as: 

public GenericActionListener(Form context,Form delegate); 

A listener object may be plugged into components us ing void 
addActionListener (j ava. awt. event .ActionListener). An event is 
then forwarded to the service actionPerformed within the dynamic context 
passed. For example, the listener can be added to a button: 

button = javaObject("java.awt.Button") 
button.addActionListener(val = listener) 

6.2 The GUI Event Composition Style 

To support the GUI event composition style, we need to (1) model event 
types as abstractions that take do services as arguments and return listeners, 
and (2) extend GUI components with a ? operator to attach listeners. For 
example, the following code creates a listener for Action events and attaches 
it to a Java Button that has been wrapped to conform to the style. 

myButton awtComponent (lljava. awt. Button") 

myButton ? Action(do = print In) 

Since there are many different types of event in the A WT framework, we 
use a generic glue abstraction, newEventType, to instantiate event types for 
our style: 

Action = newEventType 
genericListenerClass 

javaClass("pi.piccola.bridge.GenericActionListener") 
listenerMethod(service) = (actionPerformed=service.do) 
addListener(Component) = Component.addActionListener 

The argument to newEventType is a form with the following labels: 

@ genericListenerClass is a factory service to instantiate Java listener 
objects. These objects will be created using new () with arguments valO 

for the dynamic context and vall for the delegate form. 
@! listenerMethod is a service that returns the delegate form used to 

instantiate the generic listener class. 
e addListener (Component) is a (curried) service encapsulating the 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 283 

method to add listener instances. 

Here is the implementation of newEventType. Note that it is a curried 
service - the event type it returns (e.g., Action) is itself a service that will 
return a listener. A listener provides a register functionality that will be 
used by GUI components: 

newEventType (P) (Response) 
register (Component) = 

ConstrArgs = 
val = dynamic 
vall = P.listenerMethod 

do (E) : 
Response. do 

Informer = Component 
Event = E 

listener = P.genericListenerClass.new(ConstrArgs) 
P.addListener(Component) (val = listener) 

The listener object is instantiated using the new service of the (passed) 
generic listener class. As expected, the argument form for new () is the 
current dynamic context and a form with the delegate services, e.g. a binding 
actionPerformed for the action event type. Finally the listener registers 
itself on a Component by delegating registration requests to addListener () . 

The glue abstraction awtComponent instantiates A WT objects and 
extends them with the ? operator. This operation uses double dispatch to 
register the listener L: 

awtComponent(ClassName) 
object = javaObject(ClassName) 
def self = 

object 
java = object 
set (P) = ... 

?(L) = L.register(self) 

return self 

# set properties P 
# pass the component 

The Java class is instantiated, and the Piccola representing it is extended 
with services needed to support the event style. In addition, the original base 
object is still available by a projection on the label java. 

The implementation of this style may seem somewhat convoluted, but 
this is largely a side-effect of the fact we are adapting an object-oriented 
interface to a more compositional style. Keep in mind that the code 
presented here needs to be written only once. It can then be exploited by any 
number of scripts. Furthermore, advanced features like dynamic contexts are 



www.manaraa.com

284 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

typically used only to implement abstractions to support a particular style, 
and do not normally appear in top-level scripts. 

7. SCRIPTING CLASSES 

Although Piccola has no predefined object model, it is possible to 
implement different object models on top of it, much in the same way that 
CLOS is defined on top of Common Lisp [8]. In this section, we use one 
such model to script classes and mixins [3]. This particular model is 
implemented by a Class abstraction and a initial class Obj ect, from which 
all classes inherit. The following code loads the object model and creates a 
Point class: 

root = (root, load ("classes") ) # get Class, Object 
Point = Class 

name = "Point" 
super = Object 
instanceVars: (x=newRefcell(), y=newRefcell()) 

delta (P) : 
asString () 

rep () = 

"x = " + P.self.x.get() + 
", y = " + P.self.y.get() 

println(P.self.class.name + ".new(" + 
P. self. asString () + ")") 

initialize(Init) = 
P.self.x.set(Init.x) 
P.self.y.set(Init.y) 

We use the abstraction Class to create a new class. Individual classes are 
parameterized by the following bindings: 

ti The name of the class. 
• The super or parent class from which this class is derived. The model 

described here only supports single inheritance. 
• A service instanceVars () that creates the additional instance variables 

for instances of this class. Each instance variable is represented by a 
reference cell with set and get accessor services. The service 
instanceVars is optional. The default binding for this parameter 
assumes that there are no new instance variables to be added. 

e The delta (P) abstraction defines the differences of the new class with 
respect to its super class. The formal parameter P contains the nested 
forms self and super for self sends and super calls. The Point class 
defines three methods: rep (), asString () and initialize (). The 
initialize method is special: whenever we override this method, a call to 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 285 

the overridden ini tial ize () is inserted before the overriding method. 
We can omit a call to super.initialize(). This behavior is 
implemented in the Class abstraction. 

The abstraction Class creates forms with a service new () to create and 
initialize new objects. For instance, a point is created by: 

aPoint 
x 1 
y = 2 

Point.new 

Calling aPoint. rep () prints out the string: Point. new (x = 1, Y = 2), 

as expected. 
Whenever a new instance is created, del ta () and instanceVars () of all 

subclasses in the inheritance chain starting from Obj ect are called. The 
assembling is done within a scope definition for self. That way we pass 
self and the intermediate objects as super to each call to del ta () . Once 
the object is built ini tialize () gets called to establish the invariant of the 
object. 

Having the instance variables created by instanceVars is not a 
restriction of the object model. In fact, we could also create the instance 
variables directly in del ta () : 

Point = Class 
name = "Point" 
super = Object 
delta (P) : 

X = newRefcell () 
y = newRefcell () 

But keeping them by in separate intention-revealing parameter for classes 
makes the code more self-documenting. In addition, clients that stick to 
instanceVars () for creating instance variables can implement generic 
operations for cloning objects or inspecting facilities. 

ColoredPoint is a subclass of Point with an additional color field and 
overridden method asString () : 

ColoredPoint = Class 
name = "ColoredPoint" 
super = Point 

instanceVars: color=newRefcell() 
delta (P) : 

asString () = 
P.super.asString() + ", color = " + 

P.self.color.get() 
initialize(Init) = 

P. self. color. set ( (color = "Black" , Ini t) . color) 



www.manaraa.com

286 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

The method asString () overrides asString of the point class and 
appends a representation for the color of a point. Note how form extension is 
used to initialize the color slot with a default value. 

Mixins are classes with a free super. Mixin-composition composes two 
mixins to a new one. Applying a mixin to a class yields a new class. A color 

mixin may look as: 

ColorMixin = Mixin 
name = "Colored" 
instanceVars: color=newRefcell{) 
delta{P) = ... # as above 

This mixin adds a color part to any class it is applied to. Note that the 
parent class is not specified here. Now, we can apply the mixin to our 
previous class: 

myClass = ColorMixin * PointClass 
point = myClass.new 

x = 1 
Y = 1 
color = "Yellow" 

Note that we use the flexibility gained from the keyword-based argument 
to initialize the reference cells. We just pass a form as initializer, each 
initialize () method needs only its specific arguments. The Mixin 

abstraction builds a class name by prefixing the name of the mixin (e.g. 
"Colored") to the name of the parent class (e.g. "Point"). Another mixin 
may add a move () method to change x and y coordinates of a given point: 

MoveMixin = Mixin 
name = "Moveable" 
delta (P) = 

move (Diff) = 
P.self.x.set{Diff.x + P.self.x.get{)) 
P.self.y.set{Diff.y + P.self.y.get{)) 

moveablePoint = ColorMixin * MoveMixin * PointClass 

Observe that ColorMixin * MoveMixin is also a mixin. We summarize 
the classes and mixin style. 

Components: 

Connectors: 

Rules: 

Table 5: Classes and mixins 

Class, Mixin 

* 
Mixin * Class --7 Class 

Mixin * Mixin --7 Mixin 

mixin operator 

Mixin application 

Mixin composition 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 287 

The Class and Mixin abstractions shown in this section are implemented 
by approximately 80 lines of Piccola code. This illustrates that it is possible 
to encode a useful inheritance composition mechanism with feasible effort. 
Schneider [25] has shown how to encode other forms of inheritance 
composition, like Beta-style [10] composition. 

8. RELATED WORK 

In the past years, there has been considerable work on the foundations of 
concurrency, and much of this on process algebras and process calculi. The 
n-calculus [15] has proven to be successful for modeling concurrent objects 
[22][23][29]. The nL-calculus [13] replaces tupel communication of the 
polyadic n-calculus with monadic form communication. 

Pict [20] is a language that builds on the polyadic asynchronous n­

calculus. Pict's language constructs are provided as syntactic sugar on top of 
the core calculus. We have used Pict to run extensive experiments with 
different object models [11][23] and synchronization policies [28] as 
examples for composition mechanisms. These experiments led us to 
conclude that form-based communication would be a better basis for 
modeling composition than tuple-based communication, and led us to 
develop the nL-calculus [12][13]. Pict was developed to study the relation of 
types and concurrent programming, whereas Piccola is used to experiment 
with composition abstractions. 

We have been experimenting with different variants of Piccola. The 
version described here is Piccola 2.0. It completely hides the nL-primitives 
of the underlying process calculus as services, whereas these operators are 
visible in other versions. Piccola 2.0 can be compared to functional 
languages, where concurrency primitives where added, like this is done in 
CML [21]. In another variant, Piccola(T), we experiment with a type system 
for the nL-calculus [13]. Piccola(T) reflects the nL-operators as language 
primitives as in Pict. The type system is sound and complete, but lacks 
parametric polymorphism, which would be needed to type generic 
abstractions. We have also worked on extending the nL-calculus to the 
Form-calculus, which supports additional operators to hide labels. Piccola(F) 
offers these restriction operators as primitives [25]. 

In a much earlier paper with a similar title, we have explored visual 
composition of objects using scripts [18]. The present work provides a 
concrete textual syntax and a formal semantics for scripts. 

The syntax of Piccola deliberately resembles that of Python [14][30]. 
Python is an object-oriented scripting language that provides a simple 
integration of functions and objects. Python models objects and classes in 



www.manaraa.com

288 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

terms of dictionaries (which resemble forms). Methods and functions can be 
called either with positional parameters (i.e., tuples) or with keyword 
arguments (i.e., Ii la forms). Python provides operator overloading, and can 
also be used to implement architectural styles much in the way described in 
this report. It provides limited support for reflection, and it is possible to 
change the underlying object model to a certain degree (though Python does 
not have a meta-reflective architecture like Smalltalk). Python is not 
inherently concurrent, though there is a Posix-dependent threads library, and 
some researchers have experimented with active object models for Python 
[19]. 

In Perl [30], procedures may specify the visibility of their local variables 
in its declaration. To the best of our knowledge, Piccola is the first language 
that offers both static scoping and the possibility of dynamic scoping on 
demand, within a formal framework. 

Aspect-oriented Programming [9] is an approach to separating certain 
aspects of programs that cannot be easily specified as software abstractions. 
AspectJ is a language used to specify aspects that can be weaved into Java 
source code. Initial experiments have shown that certain aspects can be 
nicely expressed in Piccola. For example, Readers and Writers 
synchronization policies cannot be factored out as software abstractions in 
Java whereas this is relatively straightforward in Piccola. Whether aspects in 
general can be addressed by Piccola's compositional paradigm of agents and 
forms is an open question. 

Coplien uses C++ as multi-paradigm language [4]. He uses C++ built-in 
paradigms like OO-inheritance or templates to match different component 
models and styles as they evolve from domain analysis. 

9. FUTURE WORK AND CONCLUSIONS 

We have described how Piccola supports the paradigm that Applications 
= Components + Scripts. We show how components conforming to a style 
are scripted and how different styles can be implemented within Piccola. 
This leads to a layered approach, where the abstractions provided by one 
layer connect components of the next level in a more declarative way. 

We use forms to represent components, scripts, services, arguments to 
services, glue and coordination abstractions, and static and dynamic 
contexts. For an open component approach, however, it is clear that we must 
be able to cope with components obtained at run-time, possibly through 
network middleware. In this case Piccola must provide some reflective 
capabilities. It is not yet clear what capabilities precisely are needed to 
inspect forms. Should labels be first class values or is it enough to check for 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 289 

the existence of a given binding in a form? We are currently investigating 
lightweight approaches, like providing built-in abstractions to iterate over all 
labels of a form. This allows us to define more generic wrappers for forms, 
but forbids introducing new labels. 

Another issue related to open systems is distribution. It is not yet clear 
whether the notion of locality should go into the channels, (as for example in 
Klaim [17]) or whether it should be handled by providing dynamic services. 

A flexible type system is needed to cope both with statically known 
components as well as dynamically introduced ones. Should the type system 
be defined at the level of the 1tL-calculus (as is the case in Piccola(T)) or at 
the Piccola language level? Can we develop a type system that captures 
whether a service returns, may raise an exception, or block? Instead of a type 
system, could we augment Piccola with an assertion language that would 
allow us to express and reason about the contracts that components require 
and ensure, and correspondingly about the properties guaranteed by an 
architectural style? Other important non-functional properties include safety 
and security, real-time properties and reachability. For example, what ser­
vices are needed by a composition environment such that we can safely 
install, upgrade, and de-install components without breaking other parts of 
the system? 

Piccola is available from 
www.iam.unibe.ch/-scg/Research/Piccola/ 

ACKNOWLEDGEMENTS 

The authors thank the members of the SCG, especially Jean-Guy 
Schneider, Serge Demeyer, Sander Tichelaar, and Markus Lumpe for helpful 
comments on improving this paper. 

This work has been funded by the Swiss National Science Foundation 
under Project No. 20-53711.98, "A framework approach to composing 
heterogeneous applications". 

10. REFERENCES 

I. Franz Achermann, Markus Lumpe, Jean-Guy Schneider and Oscar Nierstrasz, "Piccola -
a Small Composition Language," Formal Methods for Distributed Processing, an Object 
Oriented Approach, Howard Bowman and John Derrick. (Ed.), Cambridge University 
Press., 2000, to appear. 

2. Daniel J. Barrett, Lori A. Clarke, Peri L. Tarr and Alexander Wise, "A Framework for 
Event-Based Software Integration" IEEE Transactions on Software Engineering, vol. 
5(4) , October 1996, pp. 378-421 . 



www.manaraa.com

290 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

3. Gilad Bracha and William Cook, "Mixin-based Inheritance," Proceedings OOPSLAI 
ECOOP '90, ACM SIGPLAN Notices, vol. 25, no. 10, Oct. 1990, pp. 303-311. 

4. James O. Coplien, Multi-Paradigm Design for C++, Addison-Wesley, Reading, Mass., 
1999. 

5. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, 
Addison Wesley, Reading, MA, 1995. 

6. David Garlan, Robert Allen and John Ockerbloom, "Architectural Mismatch: Why 
Reuse Is So Hard," IEEE Software, vol. 12, no. 6, Nov. 1995, pp. 17-26. 

7. James Gosling, Frank Yelling and The Java Team, The Java Application Programming 
Interface Volume 2, Addison Wesley, 1996. 

8. Gregor Kiczales, Jim des Rivieres, Daniel G. Bobrow, The Art of the Metaobject Pro­
tocol, MIT Press, 1991. 

9. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean­
Marc Loingtier and John Irwin, "Aspect-Oriented Programming," Proceedings 
ECOOP'97, Mehmet Ak~it and Satoshi Matsuoka (Ed.), LNCS 1241, Springer-Verlag, 
Jyvaskyla, Finland, June 1997, pp. 220-242. 

10. Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger M0l1er-Pedersen and Kristen 
Nygaard, "The BETA Programming Language," Research Directions in Object-Oriented 
Programming, B. Shriver and P. Wegner (Ed.), MIT Press, Cambridge, Mass., 1987, pp. 
7-48. 

11. Markus Lumpe, Jean-Guy Schneider and Oscar Nierstrasz, "Using Metaobjects to Model 
Concurrent Objects with PICT," Proceedings of Langages et Mode!es it Objets, Leysin, 
October 1996, pp. 1-12. 

12. Markus Lumpe, Franz Achermann and Oscar Nierstrasz, "A Formal Language for 
Composition, " Foundations of Component Based System, Gary Leavens and Murali 
Sitaraman (Ed.), pp. 69-90, Cambridge University Press., 2000. 

13. Markus Lumpe, "A Pi-Calculus Based Approach to Software Composition," Ph.D. 
thesis, University of Bern, Institute of Computer Science and Applied Mathematics, 
January 1999. 

14. Mark Lutz, Programming Python, O'Reilly, 1996. 
15. Robin Milner, "The Polyadic pi Calculus: a tutorial," ECS-LFCS-91-180, Computer 

Science Dept., University of Edinburgh, Oct. 1991. 
16. Michael Morrison, Presenting Java Beans, Sams net, 1997. 
17. Rocco de Nicola, Gian Luigi Ferrari and R. Pugliese, "Klaim: a Kernel Language for 

Agents Interaction and Mobility," IEEE Transactions on Software Engineering (Special 
Issue on Mobility and Network Aware Computing), Catalin Roman and Ghezzi (Ed.), 
1998. 

18. Oscar Nierstrasz, Dennis Tsichritzis, Vicki de Mey and Marc Stadelmann, "Objects + 
Scripts = Applications," Proceedings, Esprit 1991 Conference, Kluwer Academic 
Publishers, Dordrecht, NL, 1991, pp. 534-552. 

19. Michael Papathomas, "ATOM: An Active object model for enhancing reuse in the de­
velopment of concurrent software," RR 963-I-LSR-2, IMAG-LSR, Grenoble-France, 
November 1996. 

20. Benjamin C. Pierce and David N. Turner, "Pict: A Programming Language based on the 
Pi-Calculus," Technical Report, no. CSCI 476, Computer Science Department, Indiana 
University, March 1997. 

21. John H. Reppy, "CML: A Higher-Order Concurrent Language," ACM SIGPLAN '91 
Conference on Programming Language Design and Implementation, SIGPLAN Notices, 
vol. 26, no. 6, Toronto, June 26-28, 1991, pp. 293-305. 



www.manaraa.com

ApPLICATIONS = COMPONENTS + SCRIPTS 291 

22. Davide Sangiorgi, "An interpretation of Typed Objects into Typed Pi-calculus," RR 
3000, INRIA Sophia-Antipolis, September 1996. 

23. Jean-Guy Schneider and Markus Lumpe, "Synchronizing Concurrent Objects in the Pi­
Calculus," Proceedings of Langages et Modeles a Objets '97, Roland Ducournau and 
Serge Garlatti (Ed.), Hermes, Roscoff, October 1997, pp. 61-76. 

24. Jean-Guy Schneider and Oscar Nierstrasz, "Components, Scripts and Glue," Software 
Architectures - Advances and Applications, Leonor Barroca, Jon Hall and Patrick Hall 
(Ed.), Springer, 1999, pp. 13-25. 

25. Jean-Guy Schneider, "Components, Scripts, and Glue: A conceptual framework for 
software composition," Ph.D. thesis, University of Bern, Institute of Computer Science 
and Applied Mathematics, October 1999. 

26. Mary Shaw and David Garlan, Software Architecture: Perspectives on an Emerging 
Discipline, Prentice-Hall, 1996. 

27. Clemens A. Szyperski, Component Software, Addison-Wesley, 1998. 
28. Patrick Varone, "Implementation of 'Generic Synchronization Policies' in Pict," 

Technical Report, no. IAM-96-005, University of Bern, Institute of Computer Science 
and Applied Mathematics, February 1996. 

29. David Walker, "Objects in the pi-calculus," Information and Computing, vol. 116, no. 2, 
1995, pp. 253-271. 

30. Larry Wall and Randal L. Schwartz, Programming Perl 2nd Edition, O'Reilly & As­
sociates, Inc., 1990. 

31. Aaron Watters, Guido van Rossum and James C. Ahlstrom, Internet Programming with 
Python, M&T Books, 1996. 



www.manaraa.com

292 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

PICCOLA SYNTAX 

Form ::= 'dynamic' I 'root' I Labell Literal 
'\ ' Abstraction 
Form'.' Label 
Form '(' Expressions ')' 
Form opForm 
op Form 
'(' Expressions ')' 

Abstraction ::= Pattern { '=' I ':' } Expression 
Pattern ::= '(' [Label] ')' [Pattern] 
Expression ::= [Expressions ',' ] 'return' Form 

Expressions 
Expressions::= Statement [ ',' Expressions] 

Binding [ ',' Expressions] 
Statement ::= 'root' '=' Form 

'dynamic' '=' Form 
Binding::= [ 'def ] Label Abstraction 

[ 'def ] Label '=' Form 
Label ':' Form 
Form 

anonymous Abstraction 
Projection 
Invocation 
Infix Invocation 
Prefix Invocation 

local declarations 

change root context 
change dynamic context 
define service 
assign form 
define service without arguments 
evaluate Form / add Bindings 



www.manaraa.com

Chapter 10 

MULTI-DIMENSIONAL SEPARATION OF 
CONCERNS AND THE HYPERSPACE APPROACH 

Harold Ossher and Peri Tarr 
IBMT.J Watson Research Center, P.D. Box 704, Yorktown Heights, NY 10598, 
{ossher, tarr }@watson.ibm.com 

Keywords: Separation of concerns, software decomposition and composition, 
modularization, evolution, traceability, limited impact of change. 

Abstract: Separation of concerns is at the core of software engineering, and has been for 
decades. This has led to the invention of many interesting, and effective, 
modularization approaches. Yet many of the problems it is supposed to 
alleviate are still with us, including dangerous and expensive invasive change, 
and obstacles to reuse and component integration. A key reason is that one 
needs different decompositions according to different concerns at different 
times, but most languages and modularization approaches support only one 
"dominant" kind of modularization (e.g., by class in object-oriented 
languages). Once a system has been decomposed, extensive refactoring and 
reengineering are needed to remodularize it. 

Multi-dimensional separation of concerns allows simultaneous separation 
according to multiple, arbitrary kinds (dimensions) of concerns, with on­
demand remodularization. Concerns can overlap and interact. This paper 
discusses multi-dimensional separation of concerns in general, our particular 
approach to providing it, called hyperspaces, and our support for hyperspaces 
in Java™, called Hyper/J™. 

1. INTRODUCTION 

Separation of concerns [20] is at the core of software engineering. In its 
most general form, it refers to the ability to identity, encapsulate, and 
manipulate only those parts of software that are relevant to a particular 



www.manaraa.com

294 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

concept, goal, or purpose. Concerns are the primary motivation for 
organizing and decomposing software into manageable and comprehensible 
parts. Many different kinds of concerns may be relevant to different 
developers in different roles, or at different stages of the software lifecycle. 
For example, the prevalent kind of concern in object-oriented programming 
is data or class; each concern in this dimension is a data type defined and 
encapsulated by a class. Features [26], like printing, persistence, and display 
capabilities, are also common concerns, as are aspects [13], like concurrency 
control and distribution, roles [2], viewpoints [16], variants, and 
configurations. We refer to a kind of concern, like class or feature, as a 
dimension of concern. Separation of concerns involves decomposition of 
software according to one or more dimensions of concern. Achieving a 
"clean" separation of concerns has been hypothesized to reduce software 
complexity and improve comprehensibility; promote traceability within and 
across artifacts and throughout the software lifecycle; limit the impact of 
change, facilitating evolution and non-invasive adaptation and 
customization; facilitate reuse; and simplifY component integration. 

These goals, laudable and important as they are, have not yet been 
achieved in practice. This is primarily because the set of relevant concerns 
varies over time and is context-sensitive-different development activities, 
stages of the software lifecycle, developers, and roles often involve concerns 
of dramatically different kinds and, hence, multiple dimensions. Separation 
along one dimension of concern may promote some goals and activities, 
while impeding others; thus, any criterion for decomposition and integration 
will be appropriate for some contexts and requirements, but not for all. For 
example, the data decomposition in object-oriented systems greatly 
facilitates evolution of data structure details, because they are encapsulated 
within single (or a few closely related) classes, but it impedes addition or 
evolution of features, because they typically include methods and instance 
variables in multiple classes. Further, multiple dimensions of concern may 
be relevant simultaneously, and they may overlap and interact, as features 
and classes do. Thus, modularization according to different dimensions of 
concern is needed for different purposes: sometimes by class, sometimes by 
feature, sometimes by viewpoint, aspect, role, or other criterion. 

These considerations imply that developers must be able to identifY, 
encapsulate, modularize, and manipulate multiple dimensions of concern 
simultaneously, and to introduce new concerns and dimensions at any point 
during the software lifecycle, without suffering the effects of invasive 
modification and rearchitecture. Modern languages and methodologies, 
however, suffer from a problem we have termed the "tyranny of the 
dominant decomposition" [25]: they permit the separation and encapsulation 
of only one kind of concern at a time. Examples of tyrant decompositions are 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 295 

classes (in object-oriented languages), functions (in functional languages), 
and rules (in rule-based systems). It is, therefore, impossible to encapsulate 
and manipulate, for example, features in the object-oriented paradigm, or 
objects in rule-based systems. Thus, it is impossible to obtain the benefits of 
different decomposition dimensions throughout the software lifecycle. 
Developers of an artifact are forced to commit to one, dominant dimension 
early in the development of that artifact, and changing this decision can have 
catastrophic consequences for the existing artifact. What is more, artifact 
languages often constrain the choice of dominant dimension (e.g., it must be 
class in object-oriented software), and different artifacts, such as 
requirements and design documents, might therefore be forced to use 
different decompositions, obscuring the relationships between them. We 
believe the tyranny of the dominant decomposition is the single most 
significant cause of the failure, to date, to achieve many of the expected 
benefits of separation of concerns. 

We use the term multi-dimensional separation of concerns to denote 
separation of concerns involving: 

Multiple, arbitrary dimensions of concern. 
Separation along these dimensions simultaneously. 
The ability to handle new concerns, and new dimensions of concern, 
dynamically, as they arise throughout the software lifecycle. 
Overlapping and interacting concerns; it is appealing to think of many 
concerns as independent or "orthogonal," but they rarely are in practice. 

Full support for multi-dimensional separation of concerns opens the door to 
on-demand remodularization, allowing a developer to choose at any time the 
best modularization, based on any or all of the concerns, for the development 
task at hand. 

Multi-dimensional separation of concerns represents a set of very 
ambitious goals. They apply irrespective of software development language 
or paradigm. No existing mechanism fully satisfies them, and much research 
remains to be done in pursuit of these goals. We believe that it is necessary 
to achieve them in order to overcome the problems associated with the 
tyranny of the dominant decomposition. 

The remainder of this paper is organized as follows. Section 2 motivates 
the need for multi-dimensional separation of concerns by exploring an 
evolutionary scenario for a simple software system. Section 3 describes 
multi-dimensional separation of concerns. Section 4 introduces our 
approach, hyperspaces, and Section 5 describes Hyper/JTM, our tool support 
for Java™, and illustrates its use on the evolutionary scenario. Section 6 
discusses related work, and Section 7 conclusions and future work. 



www.manaraa.com

296 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

2. BACKGROUND AND MOTIVATION 

To illustrate some of the serious and ubiquitous problems in software 
engineering that motivate our work, we begin by describing a running 
example involving the construction and evolution of a simple software 
engineering environment (SEE), first introduced in [25]. The SEE facilitates 
the development of fairly simple programs that consist solely of expressions. 
Expression programs constructed using the SEE are represented using 
abstract syntax trees (ASTs), as illustrated in Figure 3. This environment has 
a straightforward and commonly used architecture, also shown in Figure 3, 
in which a collection of tools operates on a shared data structure-the AST. 
Though the example is, of necessity, small and simple, it is typical of a broad 
class of real systems that involve multiple tools or applications manipulating 
wholly or partially shared domain models. 

Figure 3: Tools and shared AST in the expression SEE 

2.1 The Scenario: A Matter of Concern in an SEE 

The running example involves the initial creation of the SEE, and a series 
of evolutionary changes to it. We assume a simplified initial software 
development process, consisting of informal requirements specification in 
natural language, design in UML [22], and implementation in Java™ [7]. 
The initial requirements specification is straightforward: 

The SEE supports the creation and manipulation of expression programs. 
It contains a set of tools that share a common representation of 
expressions. The set of tools should include the following: 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 297 

Evaluation tool: Determines the result of evaluating an expression 
and displays it. 
Display tool: Depicts an expression program textually to a default 
display device. 
Check tool: Checks an expression program for syntactic and 
semantic correctness. 

A straightforward partial UML design for the SEE is shown in Figure 4. 
This design uses a standard, object-oriented approach, in which a class is 
defined to represent each kind of expression AST node. Each class contains 
constructor, accessor and modifier methods, plus methods evalO, displayO, 
and checkO, which realize the required tools in a standard, object-oriented 
manner. The code is structured similarly. 

Literal 
create 

Expression 
create 
get/set methods 
evalO ____ 
displayO ..,.---­
checkO 

get/set methods 
eva!O 
displayO 
checkO 

Plus 
create 
get/set methods 
evarO 
displayO 
checkO 
'-----' 

create 
get/set methods 
evalO 
dispJayO 
checkO 
'-----' 

...---:'Tools" an:~ implemented 
mf:tho:js on eac!l A.3T class 

create 
get/set methods 
evarO 
displayO 
checkO 

'--__ ....J 

create 
get/set methods 
evalO 
display{) 
checkO 

Figure 4: Partial UML design for the expression SE 

Even this simple example demonstrates several different kinds 
(dimensions) of concerns. These include: 

Classes (or Objects): Each of the classes in the design and code 
represents one class concern. 

Features: Particularly from the statement of requirements, we can 
decompose the software into four coherent features: the "kernel" AST, 
which includes the actual representation of expressions independently of any 
of the SEE tools; the display feature; the check feature; and the evaluation 
feature. Note that each feature includes the corresponding requirement 
specification, design elements, code, and test cases, since these all pertain to 
addressing that feature concern in the system. 



www.manaraa.com

298 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Artifacts: Traditionally, different stages of the software lifecycle have 
produced different kinds of software artifacts. Some common ones are 
requirements specifications, designs, code, and test plans. 

As noted earlier, we refer to these different kinds of concerns as 
dimensions of concern. Informally, a dimension of concern is simply an 
approach to decomposing, organizing, and structuring software according to 
concerns of a particular kind. Note that, despite the clear presence of these 
different dimensions of concern, only a subset of them can be identified and 
encapsulated explicitly in the languages used in this example: artifacts, 
features within the requirements artifact, object~ within the design and code 
artifacts. After using the resulting SEE, the clients request some changes: 

It should be possible to have versions of the SEE that include subsets of 
the tools and capabilities. 
It should be possible to impose, optionally, checks for conformance to 
one or more programming styles. 
It should be possible to log, selectively, the execution of the SEE. 

This set of modifications suggests the following set of concerns: 

Configurations: The first new requirement-to permit different variants 
of the SEE with different tool configurations-is essentially a request to 
be able to "mix and match" tools in the SEE. Thus, we can think of the 
SEE as representing afamily of software [21], where each member of the 
family contains some combination of tools. 

- Feature: Style checking is a new concern in the feature dimension. 
- Logging: Logging is not the same kind of "feature" as the SEE tools-it 

is not a coherent tool itself, and it may (optionally) affect some or all of 
the features during any execution of the SEE. 

- Design patterns: While the initial version of the software was simple 
enough not to require any design patterns [6], some of the new 
requirements present opportunities to benefit from the extra flexibility 
that design patterns offer. For example, the logging capability could be 
modeled readily using Observer. From the perspective of 
comprehensibility, it may be beneficial to look at software in terms of the 
design patterns from which it is architected [12]. 

Even without deep analysis, it is clear that making the changes to satisfy 
these rather simple requirements is by no means a simple matter with 
standard object-oriented technology. Allowing selection of features and 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 299 

addition of optional style-checking requires substantial reengineering, 
probably to introduce design patterns, like Visitor, that provide the needed 
flexibility. Support for logging requires invasive changes to every method to 
be logged, such as to perform the logging directly or to participate in 
Observer design patterns. More detailed analysis of a similar example 
appeared in [25]. 

2.2 The Tyranny of the Dominant Decomposition 

The primary reason for these difficulties is that the new requirements 
deal with concerns that are not encapsulated in the original SEE. We can 
draw some important conclusions from even this simple scenario. 

Different decompositions have different properties, both good and 
bad: Each dimension of concern promotes different subsets of the key 
software engineering properties noted earlier and, perhaps most importantly, 
facilitates different kinds of change. For example, objects are units of data 
abstraction; as such, they aid in isolating users from the details of data 
representation and implementation, thereby localizing the effects of 
representation changes. On the other hand, by-class decomposition results in 
two negative phenomena with respect to features: scattering and tangling. 
Features are scattered across multiple classes-e.g., each class in the AST 
design and implementation has its own displayO method, the key method in 
the Display feature. The display method within a class is not isolated: it co­
exists-is tangled-with methods supporting other features within the same 
class. Scattering and tangling complicate understanding of how particular 
functions or features are realized in the software. Further, any change to a 
function or feature, like Display, has high impact, because scattering implies 
that it entails modifications to some or all of the classes that define displayO 
methods, and tangling implies that some of the modifications might 
inadvertently affect other features. Each of the dimensions of concern has 
both positive and negative software engineering characteristics; there is no 
"best" dimension for all purposes, which is one reason why different artifact 
languages are used for different purposes. 

Different dimensions are useful for different reasons, at different 
times: This example demonstrates clearly two crucial points. First, the set of 
dimensions of concern, and the set of concerns within those dimensions, 
vary over time. Note, for example, that the design patterns, configurations, 
and logging dimensions were not relevant to the initial software-they only 
became relevant with the introduction of new requirements. Second, the fact 
that each dimension of concern provides only a subset of desirable software 



www.manaraa.com

300 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

engineering benefits means that developers will find different dimensions to 
be more or less useful, depending on the developer, his/her role, the stage of 
development, and the particular goals he/she wishes to accomplish. Thus, for 
example, adding the new style-check feature would be simple and additive if 
the software were decomposed by feature, but because features could not be 
encapsulated, the feature had to be retrofitted into the object dimension. 
These concerns do not match-they cut across [24, 13] each other-so the 
modification is conceptually difficult, invasive, high-impact, and costly. 

Anticipation causes ulcers: Deeply ingrained within software 
engineering is the notion of anticipating and designing for the "most likely" 
kinds of changes, towards the goal of limiting the impact of future evolution. 
Thus, for example, one could argue that a good developer would have 
anticipated the need for new features, like style checking, and might have 
designed the software with Visitors from the start, which would have 
facilitated the introduction of style checking. This is true, and we believe in 
anticipating and planning for changes whenever possible. Anticipation is not, 
however, a panacea for evolution. It clearly is not possible to anticipate all 
major evolutionary directions. Further, even if it were possible, building in 
evolutionary flexibility always comes at a price: it increases development 
cost, increases software complexity, reduces performance, or often all of the 
above. This observation holds for identifying dimensions of concern as 
well-even if it were possible to identify and encapsulate all possible 
dimensions, the resulting software would probably be even more complex 
and unwieldy than it is when only a small number of "dominant" dimensions 
are encapsulated. 

Multiple dimensions, simultaneously: Artifact formalisms (such as 
programming languages, design notations like UML, etc.) in general provide 
only one (or a small number of) means of decomposing software-that is, 
they support only one dimension of concern. In fact, different artifacts for 
the same software may be written in languages with different "dominant" 
dimensions, leading to conceptual mismatches between artifacts and to poor 
traceability, which further complicates evolution. For example, requirements 
are often specified by function or by feature, as they were in this example­
this is how the customers who specify the requirements think of the 
software-while object-oriented designs and code are decomposed using 
classes. Thus, developers must continuously translate between different 
expressions of the same concepts across different formalisms. Unless an 
artifact language specifically supports a given dimension, it is not possible 
for developers to identify, separate, and encapsulate concerns along that 
dimension in that particular artifact. And, as we have seen, if some kinds of 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 301 

concerns cannot be identified, encapsulated, and manipulated as first-class 
entities, the software engineering benefits that they might provide cannot be 
achieved. The "tyranny of the dominant decomposition" becomes oppressive 
whenever the concerns a developer has, at some point during the lifecycle, 
do not match any of the ones that have been, or can be, encapsulated. Its 
symptoms are the kinds of scattering, tangling, and cascaded, high-impact 
changes that this scenario demonstrates. 

3. BREAKING THE TYRANNY: MULTI­
DIMENSIONAL SEPARATION OF CONCERNS 

The observations in the previous section lead to some important 
requirements on separation of concerns mechanisms. We use the term multi­
dimensional separation of concerns to denote separation of concerns 
mechanisms that satisfy these requirements: 

It is necessary for developers to be able to identify and encapsulate any 
kinds, or dimensions, of concern, simultaneously. Further, all dimensions 
must be created equal-there must not be "tyrant" dimensions that preclude 
decomposition along other dimensions. 

Developers must be able to identify new concerns, and new dimensions 
of concern, incrementally, at any time during the course of the software 
lifecycle. For example, it must be possible to identify only some dimensions, 
or some of the concerns in a given dimension when the dimension is first 
introduced, and then identify or introduce others as they are needed, without 
having to rearchitect the software or make invasive modifications. 

Developers must not be required to know about, or pay attention to, any 
concerns, or dimensions of concern, that do not affect their particular 
activities. One key purpose of separation of concerns is to reduce the amount 
of complexity a developer must deal with. Forcing all developers to know 
about all concerns would, instead, increase this complexity. 

It must be possible to represent and manage overlapping and interacting 
concerns. As noted earlier, while independent or "orthogonal" concerns have 
particularly pleasing properties, overlapping and interacting concerns are at 
least as common in the real world. In representing such concerns, it must 
also be possible to identify the points of interaction and maintain the 
appropriate relationships across these concerns as they evolve. 

Separation of concerns is clearly of limited use if the concerns that have 
been separated cannot be integrated together; as Jackson notes, "having 
divided to conquer, we must reunite to rule" [11]. Thus, any separation of 
concerns mechanism must also include powerful integration mechanisms, to 
permit the integration of separate concerns. 



www.manaraa.com

302 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

An important additional goal, though not, in our opinion, a defining 
characteristic of multi-dimensional separation of concerns, is the ability to 
impose new decompositions on existing software (i.e., decompose it into 
concerns along a new dimension), without explicit refactoring, 
reengineering, or other invasive change. We call this capability on-demand 
remodularization. It allows a developer to choose, at any time, the best 
modularization for the development task at hand, without perturbing existing 
ones. In addition to reducing impact of change substantially, this feature 
opens the door to non-invasive system refactoring and reengineering. 

There are potentially many ways to achieve multi-dimensional separation 
of concerns. As will be discussed in Section 6, there are a variety of modern 
mechanisms that break the tyranny to at least some extent. The rest of this 
paper describes our approach, called hyperspaces. The goals listed above are 
extremely challenging, however, and much research remains, for us and for 
others, before they are fully achieved. 

4. THE HYPERSPACE APPROACH 

We have developed a particular approach to multi-dimensional separation 
of concerns that we refer to as hyperspaces. Hyperspaces permit the explicit 
identification of any concerns of importance, encapsulation of those 
concerns, identification and management of relationships among those 
concerns, and integration of concerns. Many of the decisions we made in 
defining hyperspaces are aimed at achieving limited impact of change and 
simplified evolution. We deliberately left some detailed decisions open, to 
allow for variations with different tradeoffs. We describe hyperspaces in this 
section, and illustrate their use on the expression SEE example in the next 
section, in the context of Hyper/JTM, a tool that supports hyperspaces for 
Java™. 

4.1 Concern Space of Units 

We begin by introducing some terminology that applies to separation of 
concerns approaches in general. Software consists of artifacts, which 
comprise descriptive material in suitable languages. A unit is a syntactic 
construct in such a language. A unit might be, for example, a declaration, 
statement, state chart, class, interface, requirement specification, or any other 
coherent entity that can be described in a given language. We distinguish 
primitive units, which are treated as atomic, from compound units, which 
group units together. Thus, for example, a method, instance variable, or 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 303 

performance requirement might be treated as a primitive unit, while a class, 
package, or collaboration diagram might be treated as a compound unit. 

A concern space encompasses all units in some body of software, such as 
a set of software systems or component libraries, or a product family. For 
example, a concern space for the expression SEE contains all of the software 
artifacts described in Section 2 for both the initial system and the extensions. 

The job of a concern space is to organize the units in the body of 
software so as to separate all important concerns, to describe various kinds 
of interrelationships among concerns, and to indicate how software 
components and systems can be built and integrated from the units that 
address these concerns. We identify three distinct components to 
"separation" of concerns: identification, encapsulation, and integration. 
Identification is the process of selecting concerns and populating them with 
the units that pertain to them. l Thus, for example, we can identify the 
"display feature" concern in the expression SEE as comprising the display 
requirement and all displayO methods in the UML design diagrams and the 
Java™ code. Identification is useful, but to fully realize the benefits of 
separation of concerns, the concerns must also be encapsulated such that 
they can be manipulated as first-class entities. A Java™ class is an example 
of an encapsulated concern. The display feature is not an encapsulated 
concern in Java™, however, as its units are scattered across many Java™ 
classes. Once concerns have been encapsulated, it must be possible to 
integrate them to create software that addresses multiple concerns. In 
standard Java™, classes are integrated simply by loading them; a 
combination of import specifications and the class path determines their 
relationships. Concerns other than classes and interfaces cannot be integrated 
in standard Java™. 

4.2 Identification of Concerns: The Concern Matrix 

A hyperspace is a concern space specially structured to support our 
approach to multi-dimensional separation of concerns. Its first distinguishing 
characteristic is that its units are organized in a multi-dimensional matrix. 
Each axis represents a dimension of concern, and each point on an axis a 
concern in that dimension. This makes explicit all the dimensions of interest, 
the concerns that belong to each dimension, and which concerns are affected 

1 Note that concern identification can be done either top-down or bottom-up, depending on 
the stage of the software Iifecycle. During design activities, concerns may be selected 
first, and then units may be developed based on the concerns that were selected. During 
system evolution, units may already exist when new concerns are identified. In this case, 
the identification process determines which existing units address the new concerns. 



www.manaraa.com

304 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

by which units. The coordinates of a unit indicate all the concerns it affects; 
the structure clarifies that each unit affects exactly one concern in each 
dimension. Each dimension can thus be viewed as a partition of the set of 
units: a particular software decomposition. Any single concern within some 
dimension defines a hyperplane that contains all the units affecting that 
concern. The matrix structure permits uniform treatment of all kinds of 
concerns, and it allows developers to navigate or slice through the matrix 
according to any desired concerns. We believe that the concerns within a 
dimension, though disjoint, need not be unrelated, and we expect some 
concern structure (e.g., hierarchies) within dimensions to be valuable [17, 
14]. This remains an issue for future research. 

Some dimensions of concern naturally partition the concern space. For 
example, if every unit in a system addresses exactly one feature, then the 
Feature dimension naturally partitions the units. However, some units in a 
system may not pertain to any "feature" at all, such as an error-reporting 
routine in the SEE. To handle this situation, each dimension in a hyperspace 
has a specially-designated "none" concern, containing units that are not of 
interest at all from the perspective of that dimension. 

4.2.1 Units 

Hyperspaces can be used to organize and manipulate units written in any 
Janguage(s), though, of course, tool support is often language-specific. To 
date, we have worked only with units at the granularity of declarations (e.g., 
methods, functions, classes, UML diagrams) rather than lower-level 
constructs, such as statements or expressions. We believe, however, that 
hyperspaces can be extended to handle finer-grained units in a disciplined 
fashion; this remains an issue for future research. 

4.2.2 Concern Specifications 

Concern specifications in hyperspaces serve to identify the dimensions 
and their concerns, and to specify the coordinates of each unit within the 
matrix. A simple approach is to use a concern mapping consisting of 
specifications of the form 

x: dimension.concern 

where x is the name of a unit or a collection of units (e.g., a directory or 
package), or a pattern representing many units or collections of units. 
Examples of concern mappings for Java™ units are given in Section 5. 

In general, concern specifications can be more complex, and can specify 
the "meaning" of each dimension and concern formally or informally. There 
are two styles of specification. Extensional specifications explicitly 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 305 

enumerate the units in each concern. Intensional specifications specify 
properties of concerns and units that can be used to determine whether a 
given unit pertains to a concern. Intensional specifications have the 
advantage of conveying intent more explicitly, and of being able to 
accommodate changes to the underlying set of units without manual 
intervention. 

4.3 Encapsulation of Concerns: Hyperslices 

The concern matrix identifies concerns and organizes units according to 
dimensions and concerns. It allows many useful sets of units to be identified 
based on the concerns they affect, such as all units pertaining to a single 
concern, or to all of several concerns (areas of overlap), or to one concern 
but not another. However, the matrix does not, in itself, support 
encapsulation of concerns: the sets of units cannot simply be treated as 
modules, without additional mechanism. In hyperspaces, that additional 
mechanism is hyperslices: sets of units that are declaratively complete. 

Units are typically related in a variety of ways; for example, one function 
unit may invoke another, or it may define or use a variable declaration unit. 
When these kinds of interrelationships exist between units in different 
concerns, high coupling results. To decouple them, hyperslices are defined to 
be declaratively complete: they must declare everything to which they refer. 
For example, a hyperslice must, at minimum, include a declaration for every 
function that any of its members invokes, and for any variable its members 
use. The hyperslice need not provide a full definition for these 
declarations--e.g., it may declare a function without providing an 
implementation. Thus, declarations can be abstract, specifying (partially or 
fully, formally or informally) the properties upon which the hyperslice relies. 

Declarative completeness is important because it eliminates coupling 
between hyperslices. Instead of one hyperslice referring to another, thereby 
depending upon the other specific hyperslice, each hyperslice states what it 
needs by means of the abstract declarations, thereby remaining self­
contained. It does, however, require someone to provide full definitions of 
the abstractly-declared entities to be fully complete, but any appropriate 
hyperslice(s) can provide these, as will be shown in Section 4.5. This 
approach therefore fosters flexible configuration and reuse of hyperslices, 
and is crucial to achieving limited impact of change. 

For example, suppose a Display hyperslice contains a unit, Plus.displayO, 
which uses a Plus.getOperandO accessor function, defined in a Kernel 
hyperslice. To make Display declaratively complete, it must be augmented 
with its own declaration of Plus.getOperandO (without necessarily 
implementing it). Plus.displayO must then refer to this local declaration, 



www.manaraa.com

306 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

instead of to the accessor function in the Kernel. This eliminates the 
coupling between Display and Kernel, in favor of the assertion that the new, 
abstract declaration must eventually be "bound" to a unit in some hyperslice 
that provides a suitable implementation. 

Any set of units can be fashioned into a valid hyperslice by declaration 
completion: providing abstract declarations for everything referenced but not 
declared within the set. To some extent, this process can be performed 
automatically, using straightforward (though language-specific) analysis. 
Automatic declaration completion can determine what declarations are 
needed, and can create valid declarations. Semantic information associated 
with declarations-formal or informal specifications-is another matter 
however, and probably requires human intervention. Specifications on 
declarations, and the extent to which they can be determined automatically 
by analysis during declaration completion, remain issues for future research. 

Since any set of units can become a hyperslice through declaration 
completion, arbitrary concerns can be encapsulated using hyperslices. Thus, 
whatever limitations the underlying artifact language( s) has, and whatever 
the concern, it is always possible to synthesize a hyperslice that contains just 
those units pertaining to the concern (plus some abstract declarations). 

4.4 Relationships among Concerns 

Units, concerns and hyperslices do not exist in isolation; they can be 
interrelated in a number of different ways. For example, the "display 
feature" and the "expression class" are related in that they overlap-they 
share some of the same units, as the displayO method is part of both 
concerns-so a change to one concern may affect the other. As another 
example, we might choose to integrate "syntax check" and "style check" 
hyperslices to produce a "check" feature that performs both syntax and style 
checks. In this case, these two hyperslices would be related by one or more 
integration relationships that indicate how they are to be combined. 

We can identify two distinct classes of relationships: context-insensitive 
and context-sensitive. "Overlap" is an example of a context-insensitive 
relationship--the "display feature" and "expression class" are always related 
this way, as long as they share units in common. Integration relationships 
exemplify context-sensitive relationships-the "syntax check" and "style 
check" concerns only have this relationship if they are being integrated in 
some context (e.g., to create a check tool), but the relationship is not inherent 
in their definition. Other common kinds of concern relationships are 
"generalizes," "subsumes," and "precludes." Hyperspaces permit the 
identification and representation of both context-insensitive and context-



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 307 

sensitive relationships, and their use in analysis (e.g., impact of change) and 
integration. 

4.5 Integration of Concerns: Hypermodules 

Hyperslices are building blocks; they can be integrated to form larger 
building blocks and, eventually, complete systems. For example, to create a 
working SEE containing the Display hyperslice discussed above, Display 
must be integrated with some other hyperslice that provides a unit that can 
be bound to the new, abstract declaration of Plus. get Ope randO, to provide an 
implementation. We refer to this kind of "binding" relationship between 
units as correspondence. Correspondence is a context-sensitive relationship. 
It occurs within the context of the integration of a particular software 
component or system-the same declaration unit may be associated, for 
example, with different implementation units in different systems. In a 
hyperspace, this integration context is a hypermodule. 

A hypermodule comprises a set of hyperslices being integrated and a set 
of integration relationships, which specify how the hyperslices relate to one 
another, and how they should be integrated. Correspondence is an important 
integration relationship, indicating which specific units within the different 
hyperslices are to be integrated with one another. However, additional 
details are often needed to specify just how the integration is to occur. For 
example, if two methods correspond, should one override the other in the 
integrated system, or are they both to be executed? If both, in what order, 
and how should the return value be computed? If the types of their 
parameters do not match, what transformations are needed to reconcile 
them? In the example above, it is sufficient to integrate the corresponding 
declarations of Plus. get Ope ran dO in Display and Kernel, which results in the 
Kernel implementation being called by Plus.displayO at run time. 

Conceptually, and often in practice through use of a compositor tool, the 
integration specified by integration relationships can actually be performed 
to produce a set of integrated units. This set will be declaratively complete, 
and is therefore a hyperslice. A hypermodule can therefore be thought of as a 
composite hyperslice, produced by integrating a number of subsidiary 
hyperslices. This implies that hypermodules can be nested, allowing large 
systems to be built by successive integration. 

Declarative completeness, correspondence, and even the more detailed 
integration relationships, represent fairly loose forms of binding, which 
promotes evolvability. Since hyperslices do not depend on each other 
directly, software artifacts are subject to a completeness constraint in which 
each declaration unit in a system must correspond to compatible definition(s) 
or implementation(s) in some hyperslice(s). Replacing a definition or 



www.manaraa.com

308 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

implementation is non-invasive on hyperslices; it merely requires the 
redefinition of integration relationships. Correspondence thus provides great 
flexibility and directly supports substitutability, including mix-and-match 
and plug-and-play. Completeness constraints can be imposed as needed (e.g., 
on code, to ensure that it can run), but they are not necessary when a 
hypermodule represents a building block (e.g., a reusable component or 
framework), whose remaining needs can be satisfied through future 
integration. 

Different types of correspondences can occur, beyond the association 
between declarations and definitions. For example, a requirements unit may 
correspond to one or more design units that satisfy it; or a unit implementing 
the evalO function may correspond to a unit that encapsulates code to check 
for a previously cached result before evaluating. Correspondence and other 
relationships are deliberately left abstract in this model, as their details 
depend on many factors, including the language(s) in which units are 
written, which constructs are treated as primitive and compound units, the 
extent of environment support for correspondence, etc. Our intent is to 
provide an abstract model within which multiple semantics for 
correspondence and multiple realizations of hyperspaces can be specified. 
Correspondence relationships in Hyper/JTM, described in Section 5, extend 
the composition rules from our earlier work on subject-oriented 
programming [18]. 

Clearly, the issue of whether corresponding units are "compatible" (e.g., 
whether an implementation unit satisfies a declaration unit's requirements, 
or whether a design unit satisfies a requirement) involves both syntactic and 
semantic issues. How to characterize and check for such compatibility 
remains an issue for future research. Even once resolved, however, we 
expect checking to be semi-automatic in general; ultimately, software 
engineers must understand enough about corresponding units to determine 
whether or not they are compatible and how best to integrate them. 

Hypermodules can be used to encapsulate many kinds of software 
artifacts, components, and fragments thereof, and to integrate them in 
different ways. For example, an entire artifact, like a requirements 
specification, a design, or code, can be modeled as a hypermodule. A 
software system as a whole is also a hypermodule, subject to the 
completeness constraint. A system hypermodule might consist of a 
hyperslice for each artifact, with composition relationships describing how 
the artifacts interrelate; they might, for example, indicate how particular 
design and code units elaborate given requirements units. Alternatively, it 
might consist of a subsidiary hypermodule for each feature, with integration 
relationships specifying how the features interact. Each feature 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 309 

hypennodule, in tum, consists of a hyperslice for each artifact, with 
integration relationships as above. 

5. HYPER/PM: HYPERSPACES FOR JAVATM 

We have implemented a tool, called Hyper/JTM [10], which supports 
hyperspaces. It currently supports one language for defining units­
JavaT~and we have begun looking at incorporating UML also [4]. In this 
section, we describe Hyper/J™ and illustrate its use by describing its 
application to the development and evolution of the expression SEE 
example. We conclude this section by summarizing how Hyper/JTM, and the 
model of hyperspaces it embodies, overcome the problems described in 
Section 2 to achieve the software engineering goals noted in Section 1. 

5.1 The Tool 

Hyper/JTM permits the identification, encapsulation and integration 
(through composition) of multiple dimensions of concern, and it realizes the 
model of hyperspaces presented in Section 4. It takes as input a project 
specification, which identifies the units (Java™ code) in a given hyperspace; 
a concern mapping, which describes how the units are organized in the 
concern matrix; and a hypermodule specification, which describes 
hypermodules and controls composition. We will describe these in more 
detail below. Hyper/JTM can be used at all stages of the software lifecycle, 
for initial development as well as for extension or evolution of software 
initially developed with it or without it. 

Hyper/PM includes visual, WYSIWYG support for specifying and 
integrating concerns. Though its support is still preliminary at present, 
Hyper/JTM allows developers to identify and manipulate concerns, to focus in 
on particular dimensions of concern, and to create hypermodules by trial­
and-error integration of concerns. A developer starts creating a hypermodule 
by choosing a set of concerns and an overall default relationship among 
those concerns (such as "mergeByName," described below). Hyper/JTM 
creates valid hyperslices for the concerns by automatic declaration 
completion, and composes them based on the specified relationship(s). The 
resulting composed hyperslice is displayed. If it is not as desired, the 
developer can specify new relationships, and examine the new result. S/he 
can also modify the original concerns; Hyper/JTM will automatically 
recompute the relationships (deactivating, but not deleting, any that no 
longer apply) and create a new composed hyperslice that, in many cases, is 



www.manaraa.com

310 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

either correct or close to what is desired. This interaction continues until the 
composed hyperslice meets the developer's requirements. 

The development of Hyper/.JTM was influenced by some important design 
goals, intended to foster easy, incremental adoption. First, we did not want 
to require developers to adopt new programming languages, or to use 
special-purpose compilers or virtual machines. We therefore implemented 
Hyper/J™ to work on and generate standard Java™ class files. All the 
support for multi-dimensional separation of concerns occurs outside the 
artifact language, Java™. Second, we wanted Hyper/JTM to provide useful 
benefits when applied to standard Java™ programs, and additional benefits 
when applied to programs written with Hyper/J™ in mind. It is therefore 
able to identifY, encapsulate and integrate concerns from standard Java™ 
programs, without requiring special coding conventions or packaging. 

5.2 Developing with (and without) Hyper/PM: 
The Expression SEE in Hyperspace 

To convey a sense of the different ways in which developers can leverage 
Hyper/J's capabilities throughout the software development lifecycle, we 
present here part of the development process of the expression SEE. Only 
small illustrations of code are shown here; the full, runnable code for the 
SEE example is available at the hyperspace web site [10]. 

5.2.1 Initial Development, without Hyper/JTM 

To illustrate incremental adoption of Hyper/.JTM, we assume that the 
initial SEE was developed using standard object-oriented design and 
implementation techniques, without Hyper/J™, to produce the design and 
code shown in Figure 4 (Section 2.1). Feature concerns are not identified or 
encapsulated within this code. 

5.2.2 Mix-and-Match of Features (and Developing Product Lines) 
with Hyper/JTM 

The first change in the requirements entailed permitting the creation of 
different versions of the expression SEE, each with different subsets of 
features. Hyper/J™ can help here in two ways. First, it provides on-demand 
remodularization-the ability to identifY and encapsulate new dimensions of 
concern at any time, without invasive changes. Thus, developers can 
introduce the needed feature concerns using Hyper/.JTM, and then manipulate 
those concerns as first-class entities. Second, Hyper/J's composition 
capability permits the selective integration of concerns, and hence creation of 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 311 

variants of the expression SEE that integrate different subsets of the 
available features, as needed, non-invasively. 

To use Hyper/JTM to accomplish this task, a developer performs the 
following steps: 

Create a project specification: Developers create hyperspaces initially 
by specifying a set of Java™ class files that contain the code units that will 
populate the hyperspace. This is analogous to creating a project or a 
repository in an integrated development environment. In the Hyper/JTM GUI, 
developers can choose to add class files at any time using a browser; when 
using the batch system, developers write a project specification, such as: 

hyperspace Expression_SEE_Hyperspace 
class com.ibm.hyperJ.ExpressionSEE.*; 
file c:\u\smith\com\ibm\hyper J\util\Set.class 

Project specifications can contain wildcards, as shown above, and can use 
either Java™ fully qualified class names or path names of files. 

Hyper/JTM automatically creates one dimension-the Class File 
dimension-and it creates one concern in that dimension for each class file it 
loads. The contents of those concerns are the units (interfaces, classes, 
methods, and member variables) in the corresponding class files. 

Create concern mappings: To achieve the mix-and-match of features 
that is desired, the developer must first encapsulate the features as first-class 
concerns. S/he does this by creating a new dimension-the Feature 
dimension-and describing how existing units in the hyperspace address 
concerns in that dimension. To do so, s/he specifies concern mappings, such 
as: 

package com.ibm.hyperJ.ExpressionSEE: Feature.Kernel 
operation display: FeatureDisplay 
operation check: Feature.Check 
operation eval: Feature.Eval 

The first mapping indicates that, by default, all of the units contained 
within the Java™ package com.ibm.hyperJ.ExpressionSEE address the 
Kernel concern in the Feature dimension. Since the Feature dimension does 
not yet exist, Hyper/JTM will create it (and the Kernel concern) upon 
processing this concern mapping. The other three mappings indicate that any 
methods named "display," "check," or "eval" address the Display, Check, or 
Eval features, respectively. These later concern mappings override the first 
one, whenever they apply. This illustrates an approach employed throughout 



www.manaraa.com

312 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Hyper/JTM: specification of a general rule followed by exceptions, to clarify 
and shorten specifications. 

The concern matrix now contains two dimensions: Class File and 
Feature. Each unit addresses exactly one concern in every dimension. Thus, 
for example, the method Expression.displayO addresses the concern com.­
ibm.hyperJ.ExpressionSEE.Expression in the Class File dimension, and the 
Display concern in the Feature dimension. 

Create hypermodules: Once the feature concerns have been identified, 
the developer can create versions of the SEE that contain different sets of 
features by defining hypermodules. A hypermodule specification comprises: 

- A set of hyperslices, specified in terms of concerns identified in the 
concern matrix. Examples include individual concerns, and unions, 
intersections or complements of concerns. Hyper/JTM performs 
declaration completion automatically to create valid hyperslices. 
Integration relationships among the hyperslices and their units. General 
rules for determining relationships can be followed by exceptions. 

For example, the following hypermodule specification defines a version 
of the SEE that contains the Kernel, Display, and Check capabilities: 

hypermodule SEE_With_DisplaLAnd_Check 
hyperslices: Feature.Kernel, FeatureDisplay, 

Feature.Check 
relationships: mergeByName 

In this hypermodule, the Kernel, Display, and Check concerns are related by 
a "mergeByName" integration relationship. The "ByName" indicates that 
units in the different concerns are considered to correspond if they have the 
same names (and signatures, where appropriate). The "merge" indicates that 
corresponding entities are to be combined so as to include all their details; 
for example, all members in corresponding classes are brought together in 
the composed class. This integration relationship, and many of the others in 
Hyper/JTM, are based on composition rules defined for subject-oriented 
programming [18]. 

The hyperslice that results from composing these concerns contains all 
the AST classes, but with just Kernel, Display and Check functionality in 
each. In particular, no evalO methods are present. 

When the developer is satisfied with the composed hyperslice, s/he can 
ask to have code generated. Hyper/JTM generates Java™ class files and 
composed pseudo-source files for any composed hyperslice. The class files 
can then be executed (or otherwise used) like any other Java™ classes, and 
the pseudo-source files can be used as "source" in debugging sessions. In the 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 313 

example, the composed program represents an executable version of the 
expression SEE that contains the Kernel, Display, and Check functionality 
only. Other versions of the environment can be created similarly, by defining 
new hypermodule specifications and using composition. Note that creation 
of hypermodules is entirely non-invasive, unlike the retrofitting of design 
patterns usually needed to achieve a similar result. 

This part of the scenario has demonstrated the utility of Hyper/J's on­
demand remodularization and integration capabilities on existing code. 
Notice that the feature concerns did not have to be identified or separated 
during initial development to permit them to be encapsulated. Also notice 
that each of the concerns is itself a reusable component that can be integrated 
in different contexts with different other concerns-none of them is coupled 
with any other. These properties imply powerful support for development 
and configuration of variations within product lines or families. 

5.2.3 The Addition of Style Checking 

The expression SEE clients eventually requested an enhancement that 
permits optional style checking of expression programs. Hyper/JTM allows 
the new feature to be developed separately from the existing features, and 
non-invasively. That is, developers can write the code for the new feature as 
a new, separate Java,TM package (or packages), which we call a hyperslice 
package, because it is deliberately written to encapsulate a concern. They 
will then be able to integrate this package with other concerns as needed. 
This adds tremendous flexibility to the code architectures that developers 
can select, and to the range of software development processes they can use. 

Figure 5 helps to illustrate this point. It depicts the code in the new 
package that realizes the style checking feature. Notice that the package 
contains solely the code needed to implement the style checking feature (plus 
abstract declarations, not shown, for anything "foreign" that is used, such as 
accessor methods from Kernel). Its class structure is similar to that of the 
original system (Figure 4), but not identical, because style checking only 
affects some of the Expression classes. This is an important feature of multi­
dimensional separation of concerns using Hyper/JTM: that different concerns 
can have different perspectives on, or views of, the domain model under 
development. These different views can later be reconciled by specifying the 
appropriate relationships between the concerns. 

Once the code in Figure 5 is complete and has been compiled with any 
Java™ compiler, the developer can add the resulting class files to the 
existing hyperspace. This results in the automatic addition of new concerns 
in the Class File dimension-one for each of the class files in the style 



www.manaraa.com

314 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

. checker package. The developer can then define an additional, simple 
concern mapping to create a Style Checker feature concern: 

package com.ibm.hyperJ.StyleChecker.* : Feature.StyleChecker 

Ex ression 

checkO 

Literal naryOp 

checkO checkO checkO 

Figure 5: The style checking Hyperslice package 

With the style checking feature now identified as a concern, the 
developer can create variants of the expression SEE that contain style 
checking or not, as desired, in much the same way as s/he can mix-and­
match the other features, described earlier. 

The addition of style checking has demonstrated an important feature of 
HyperlJ™. As shown in Section 5.2.2, developers need not use Hyper/JTM 
during initial development-they can use it after development-but if they 
choose to use it during initial development of some part of the system, they 
can achieve separation of concerns, and code architectures, that would be 
difficult or impossible to achieve using standard object-oriented techniques. 
The extra flexibility does not derive from the use of new languages or 
paradigms-the style checker, for example, was written as a standard 
package in Java™-but, instead, from the integration (composition) features 
of Hyper/JTM. It has many important advantages and uses, including: 

The ability to treat hyperslice packages as reusable components. When 
hyperslice packages are used in new contexts, the composition 
relationships (possibly referring to special-purpose glue code) can 
include any adaptation that might be necessary (white-box reuse). 
The ability to structure code and design along the same lines as 
requirements [4], thereby enhancing traceability, by encapsulating the 
code that realizes a particular requirement in one or more hyperslice 
packages. 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 315 

5.2.4 Retrofitting a Design Pattern for Logging 

The final change we will explore is the addition of optional logging (or 
debug tracing) throughout the expression SEE. This modification entails 
making some or all methods in various classes or features print log messages 
upon method entry and exit. 

Clearly, the logging capability is not specific to the expression SEE-it 
makes no reference to any expression classes or methods, and the same 
logging capability could be used in multiple contexts. Thus, the developers 
determined that they already had a pre-existing, generic, reusable logging 
component that they could use to satisfy the new end-user requirement. 
Their reusable component library contains an implementation of the 
Observer design pattern, along with a particular instantiation of that pattern 
to implement logging, as shown in Figure 6. 

Global 

II Common 
II definitions 

_ acceptNotification 
(Object[] params) 

Logger 

_acceptNotification 
(Object[] params) 

_ beforelnvoke 
(String className, 
String methodName) 

_afterlnvoke 
(String className, 
String methodName) 

Figure 6: The logging Hyperslice package 

In this case, the developers use Hyper/JTM to retrofit the logging 
capability, which is already encapsulated in a separate hyperslice package 
(the reusable library), by integrating it into the SEE. Hyper/JTM permits them 
to make this change additively. The developer simply loads the existing 
component class files into the hyperspace with the rest of the system, and 
specifies an appropriate concern mapping to create a new Feature concern, 
which s/he calls Logging. 



www.manaraa.com

316 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

To instrument methods in the existing code, the developer defines a 
hypermodule to integrate the Logging feature with any concerns that s/he 
wants to be logged. For example, to create a version of the expression SEE 
that contains the Kernel, Evaluation, and Syntax Check features, with these 
features logged, s/he might define the following hypermodule: 

hypermodule SEE_With_Logged_EvaLAnd_Check 
hyperslices: Feature.Kernel, Feature.Check, 

Feature.Eval, Feature.Logging 
relationships: 

mergeByName; 
merge Feature.Logging.LoggedClass with *; 
bracket -_* with 

JogEntry(ClassName, MethodName) 
JogExit(ClassName, MethodName) 

The "merge" relationship expands on the "mergeByName" relationship; 
it indicates that the LoggedClass unit in the Logging concern from the 
Feature dimension is to be merged with all other class units in the other 
hyperslices, even though their names differ. Thus, for example, LoggedClass 
will be merged with the Expression class in Feature.Kernel. Only the same 
types of units are merged, classes in this case. The "bracket" relationship 
indicates that each method whose name does not begin with an underscore 
should be bracketed by the methods _logEntry and _logExit. Thus, for 
example, each displayO method in the composed hyperslice will call 
_logEntry upon entry and _logExit before exit. The parameters passed to 
these bracketing methods will be the names of the class and method, 
enabling the logger to identify the method called. The bracket relationship is 
very useful for circumstances, like this one, where developers need to add 
behavior to the beginning and/or end of methods. 

Notice that this development scenario entailed the integration of generic, 
reusable components-the Observer design pattern and logging-into an 
existing system that had not been designed to use them. This is a common 
problem for developers, and it occurs in many forms, at all stages of 
software development-for example, integrating a commercial-off-the-shelf 
database or library component into software during initial development, or 
retrofitting a design pattern or other component into the software during the 
course of evolution. Hyper/JTM facilitates a wide range of such integration 
activities. The same mechanisms can be used both for integration and 
customization, as this example shows. 

We note that the multi-dimensional approach permits integration and 
customization using any concerns, in any dimensions. Thus, for example, 
while the developers chose to add logging to a subset ofjeatures, they could 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 317 

equally well have decided to add it to a subset of classes, or to some mix of 
features and classes. The only difference is in the set of hyperslices specified 
in the hypermodule. This ability to treat all concerns as equal provides 
developers the ability to focus their attention on precisely the part of a 
system that they care about to accomplish their goals. 

5.3 Evaluation: Achieving the "ilities" 

The development and evolution scenarios just described demonstrate 
some of the ways in which developers can use Hyper/JTM to facilitate a broad 
range of common software engineering activities throughout the software 
lifecycle. We conclude here by evaluating Hyper/J™ briefly with respect to 
how well it helps developers to achieve the desirable "ility" properties 
described in Section 1. 

Comprehensibility: By their structure, hyperspaces enable software 
engineers to focus in on any dimensions and concerns of importance that are 
represented in the hyperspace-they need only examine the hyperplane 
containing the concern. This facilitates comprehensibility. Further, the 
ability to define new concerns on demand permits developers to identify 
concerns on an ongoing basis, as they arise during the course of the software 
lifecycle. This reduces the initial design and development burden on 
developers by not forcing them to identify all concerns up front that might 
possibly be important at some point in the software lifecycle. It also 
improves comprehensibility by permitting developers to identify concerns 
only when they actually do become important, rather than imposing the 
cognitive burden of identifying and separating all potentially useful concerns 
in advance. 

The ability to separate, simultaneously, all concerns of importance 
enables developers to focus on the interactions among concerns and to 
identify (and encapsulate) new concerns. Hyperspaces make explicit the 
ways in which concerns affect one another, based on how they intersect and 
on the interrelationships in which they are involved. These interactions are 
extremely important for evaluating impact of change on other concerns when 
working with a particular concern. Concern intersections also often turn out 
to he useful concerns themselves (e.g., style checking of binary operations, 
an intersection of feature and class concerns). Hyperspaces provide for the 
identification and reification of such concerns. Further, the structure of a 
hyperspace aids the identification of other types of "hidden" concerns. For 
example, the definition of dimensions precludes situations where two 
concerns in the same dimension overlap. This property helps identify many 



www.manaraa.com

318 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

kinds of potential encapsulation errors, ranging from failure to identify 
concerns, to poor separation of concerns, to coupling of concerns. 

Evolvability, limited impact of change, and traceability: Hyperspaces 
greatly facilitate many aspects of evolution. First, they enable additive, 
rather than invasive, extension, customization, and extraction of hyperslices, 
often even when the changes were not anticipated, as the example shows. 
This is a significant part of the goal of achieving limited impact of change. 
Second, the addition of units, concerns, and dimensions to hyperspaces is 
clearly straightforward, with little impact on existing concerns. Moreover, 
the process of adding units to a hyperspace (and of defining new concerns), 
forces developers to determine how the new units (concerns) affect existing 
concerns (units), even if by only indicating that the new units (concerns) do 
not affect any existing concerns (units). 

Hyperspaces also help to limit the impact of removing concerns, which is 
typically the most invasive and high-cost evolutionary activity. A common 
problem in removal is that such changes tend to cascade throughout large 
parts of a software system. By including the declarative completeness 
requirement as part of the definition of hyperslices, we have ensured that 
removal of units, and hence, concerns, can, at worst, affect nothing more 
than the set of hypermodules in which those units and concerns played 
explicit roles in relationships. This is because the model eliminates direct 
dependencies among hyperslices by using declarative completeness. Thus, 
while removal of a unit from a hyperslice, or a hyperslice itself, from a 
hyperspace may end up eliminating units with which units in other 
hypermodules had been related, the breaking of these can be followed, non­
invasively, by the establishment of new relationships to other units in other 
hyperslices that fulfill the intended semantics of a given concern 
relationship. The impact of removal can, therefore, be limited to the 
particular hyperslice it affects and to the relationships within hypermodules. 
The "dangling relationships" that result from removing units can also be 
used to identify concerns that might not have been separated appropriately, 
and to identify other concerns that should also be removed (e.g., when 
removing a display requirement, we would certainly want to remove any 
design and code concerns that satisfy the requirement). Thus, the model 
promotes both traceability and limited impact of change. 

6. RELATED WORK 

In a prior paper [25], we discussed many modern approaches that 
introduced novel modularization mechanisms related to multi-dimensional 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 319 

separation of concerns: subject-oriented programming [8,18], aspect­
oriented programming [13], contracts [9], role models [2, 27], adaptive 
programming [15], Viewpoints [16] and Catalysis [5]. All of these, except 
Viewpoints, pertain to object-oriented systems, in which the dominant 
decomposition is by class. Each introduces a mechanism, analogous to 
hyperslices, to segregate design or code that addresses other, non-class 
concerns. All these approaches provide some of the benefits of hyperslices, 
in terms of identification and encapsulation of concerns that are not in the 
dominant decomposition dimension. Many of these approaches also provide 
some of the benefits of hypermodules-some degree of flexibility in 
composition of concerns along some useful dimensions [25]. As such, they 
all make valuable contributions by satisfying some of the goals of multi­
dimensional separation of concerns, but none of them satisfies all. 

One key distinguishing characteristic of hyperspaces relative to all other 
mechanisms known to us is the support for on-demand remodularization: the 
ability to extract hyperslices to encapsulate concerns that were not separated 
in the original software artifact. This lowers the entry barrier, greatly 
facilitates evolution, and opens the door to non-invasive refactoring and 
reengineering. Other important characteristics of hyperspaces that help to 
differentiate them from other approaches include: 

Hyperspaces do not restrict the nature or number of dimensions of 
concern permitted. They allow new concerns and dimensions to be added 
at any time, and these can apply to existing units, using on-demand 
remodularization, or to new units. 
Hyperslices are grouping constructs that collect together all software that 
pertains to a particular concern. Contracts and role models are similar, 
but not aspects, composition filters or propagation patterns, which are 
finer-grained, each dealing with part of a concern (e.g., methods that 
share a weave specification or the filtration needs of a particular object). 
Integration and other kinds of relationships are separate from artifacts. 
This reduces coupling, which has many benefits. Hyperslices are 
reusable; different integration relationships can be used in different 
contexts to specify details of how they are to be reused in those contexts. 
Separate relationship specifications also permit the hyperspace approach 
to be applied without changing artifact languages. Composition filters are 
similar, in that attachment is specified separately from filter code, 
whereas aspects contain weave specifications and code bundled together. 
Hyperslices are declaratively complete, separately understandable, and 
reusable. It is possible to understand a hyperslice in isolation, and 
conceptually possible to specify its semantics. It is also conceptually 
possible to understand a hypermodule by combining one's understanding 



www.manaraa.com

320 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

of the component hyperslices and the composition relationships; it is not 
necessary to create the composed artifact and examine it. Details of 
semantic specification of hyperslices and composition remain an 
important area of future research. 
Hyperspaces support primitive units at the granularity of declarations 
(e.g., functions or members). This is a limitation, but one that simplifies 
understanding of hyperslices and hypermodules, as well as 
implementation of composition [19, 25]. 

- Concerns can span lifecycle phases. Many of the details of making this a 
practical reality remain to be worked out. 

Hyperspaces also relate to, and incorporate results from, other areas of 
related work. Loose binding is an accepted means of helping to limit the 
impact of some forms of change. Work in the area of software architecture 
(e.g., [23, 1]) has identified the need to separate software components (like 
hyperslices) from connectors (like relationships). Similarly, earlier work on 
Precise Interface Control (PIC) [28] identified benefits of representing a 
particular kind of inter-component interaction: provides and requests. The 
declarative completeness requirement and use of separately specified 
composition relationships are in the spirit of these, and similar, approaches. 
Barrett et. al. [3] describe a spectrum of mechanisms to achieve connections 
among components, ranging from tightly to loosely bound, and from early to 
late binding. We have attempted to choose a point on this spectrum that 
balances the need to limit the impact of change (by not permitting software 
components to know about each other) with the need for analyzability (most 
readily accomplished in the presence of tighter binding). 

7. CONCLUSIONS AND FUTURE WORK 

A number of important problems in software engineering have resisted 
general solution, including problems related to the "ilities:" 
comprehensibility, traceability, and evolvability. We believe that these 
problems share a common cause: failure to identifY and encapsulate, 
simultaneously, all concerns of importance in a software system, and the 
inability to use different dimensions of concern for different purposes 
throughout a system's lifetime. This paper presented multi-dimensional 
separation of concerns as an ambitious set of goals that need to be achieved 
to address these problems fully. It also presented our approach to achieving 
them, called hyperspaces, and its realization in tool support for Java™, 
called Hyper/JTM. 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 321 

Hyperspaces permit the identification, encapsulation, and integration of 
any kinds of concerns in standard software, either during initial system 
development or in retrospect, as the need arises during the course of 
evolution. They allow the set of concerns of interest to grow and change. 
They permit explicit representation of relationships among units, concerns 
and dimensions, loose coupling among concerns, and on-demand 
remodularization. They even allow for the representation of concerns that 
span the software lifecycle-for example, the "display" concern has 
requirements, design, code, and test module units associated with it. Because 
developers have the choice of when and how to apply hyperspaces, 
hyperspaces do not interfere with existing software processes-though 
developers may choose to modifY their processes to take advantage of the 
extra flexibility hyperspaces give them-and the entry barrier for developers 
to use them is quite low. 

This work is clearly at an early stage, largely unproven in practice as yet. 
Still, a considerable body of experience and related research now exists to 
support the claim that multi-dimensional separation of concerns is one of the 
key software engineering issues today, and hence an important area for 
research. Many questions remain, such as: What sorts of concerns are 
important in real software development projects? What are their structure 
and the nature of their interactions, for concerns both within and across 
software artifacts? How can one understand, and perhaps specifY, 
encapsulated concerns and their integration? What mechanisms are needed 
to achieve the goals of multi-dimensional separation of concerns? How do 
they scale? What tool support is needed? How can the software process be 
improved to take advantage of these ideas and tools? As these and many 
other open questions are answered, and tools are built, it will become 
possible to apply multi-dimensional separation of concerns to real 
development, and thus to explore its benefits and its limits. 

8. REFERENCES 

I. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions 
on Software Engineering and Methodology, July, 1997. 

2. E. P. Andersen and T. Reenskaug. System design by composing structures of interacting 
objects. In ECOOP '92: European Conference on Object-Oriented Programming, 
Springer-Verlag. LNCS, no. 615, pp. 133-152, Utrecht, June/July 1992. 

3. D. J. Barrett, et al. A Framework for Event-Based Software Integration. ACM 
Transactions on Software Engineering and Methodology, 5(4):378-421, October 1996. 

4. S. Clarke, W. Harrison, H. Ossher and P. Tarr. Subject-oriented design: Towards 
improved alignment of requirements, design and code. In Proceedings of the Conference 



www.manaraa.com

322 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

on Object-Oriented Programming: Systems, Languages, and Applications, pages 325-
339, November, 1999. ACM. 

5. D. D'Souza and A. C. Wills. Objects, Components, and Frameworks with UML: The 
Catalysis Approach. Addison-Wesley, 1998. 

6. E. Gamma, R. Helm, R. Johnson, and 1. Vlissides. Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison-Wesley, 1994. 

7. 1. Gosling, et al.. The Java™ Language Specification. Addison-Wesley, 1996. 
8. W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure objects). 

In Proceedings of the Conference on Object-Oriented Programming: Systems, 
Languages, and Applications, pages 411-428, September 1993. ACM. 

9. I. M. Holland. Specifying reusable components using contracts. In ECOOP '92: 
European Conference on Object-Oriented Programming, Springer-Verlag. LNCS 615, 
pp. 287-308, Utrecht, June/July 1992. 

10. Hyperspace web site, http://www.research.ibm.comlhyperspace. 
11. M. Jackson. Some complexities in computer-based systems and their implications for 

system development. In Proceedings of the International Conference on Computer 
Systems and Software Engineering, pages 344-351, 1990. 

12. R. K. Keller, et al. Pattern-Based Reverse-Engineering of Design Components. In 
Proceedings of the 21st International Conference on Software Engineering (ICSE'99), 
pages 226-235, May, 1999. 

13. G. Kiczales. Aspect-oriented programming. In ECOOP '97: European Conference on 
Object-Oriented Programming, 1997. Invited presentation. 

14. Doug Kimelman, Multidimensional tree-structured spaces for separation of concerns in 
software development environments. Position paper, OOPSLA '99 Workshop on Multi­
Dimensional Separation of Concerns in Object-Oriented Systems, 
http://www.cs.ubc.ca/~murphy/multid-workshop-oopsla99. 

15. M. Mezini and K. Lieberherr. Adaptive plug-and-play components for evolutionary 
software development. In Proceedings of the Conference on Object-Oriented 
Programming: Systems, Languages, and Applications, October, 1998. 

16. B. Nuseibeh, 1. Kramer, and A. Finkelstein. A framework for expressing the 
relationships between multiple views in requirements specifications. IEEE Transactions 
on Software Engineering, 20(10):760-773, October, 1994. 

17. H. Ossher. A case study in structure specification: A Grid description of scribe. IEEE 
Transactions on Software Engineering, 15(11), 1397-1416, November, 1989. 

18. H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying subject­
oriented composition. Theory and Practice of Object Systems, 2(3): 179-202, 1996. 

19. H. Ossher and P. Tarr, Operation-level composition: A case in (join) point. In ECOOP 
'98 Workshop Reader, pages 406-409, July 1998. Springer Verlag. LNCS 1543. 

20. D. L. Parnas. On the criteria to be used in decomposing systems into modules. 
Communications of the ACM, 15(12): 1053-1058, December 1972. 

21. D. L. Parnas, On the Design and Development of Program Families. In IEEE 
Transactions on Software Engineering, 2(1), March 1976. 

22. 1. Rumbaugh, I. Jacobson, and G. Booeh. Unified Modeling Language Reference 
Manual. Addison-Wesley, 1998. 

23. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. 
Prentice Hall, April 1996. 

24. P. L. Tarr and L. A. Clarke. PLEIADES: An object management system for software 
engineering environments. In Proceedings of the ACM SIGSOFT '93 Symposium on 
Foundations of Software Engineering, pages 56-70, December, 1993. 



www.manaraa.com

MULTI-DIMENSIONAL SEPARATION OF CONCERNS & HYPERSPACES 323 

25. P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of separation: Multi­
dimensional separation of concerns. In Proceedings of the 2Ft International Conference 
on Software Engineering (ICSE'99), 107-119, May 1999. 

26. C. R. Turner, et al. Feature Engineering. In Proceedings of the 9th International 
Workshop on Software Specification and Design, 162-164, April, 1998. 

27. M. VanHilst and D. Notkin. Using roles components to implement collaboration-based 
designs. In Proceedings of the Conference on Object-Oriented Programming: Systems, 
Languages, and Applications, pages 359-369, October 1996. ACM. 

28. A. L. Wolf, L. A. Clarke, and J. C. Wileden. The AdaPIC toolset: Supporting interface 
control and analysis throughout the software development process. IEEE Transactions 
on Software Engineering, 15(3):250-263, March 1989. 



www.manaraa.com

Chapter 11 

COMPONENT INTEGRATION 
WITH PLUGGABLE COMPOSITE ADAPTERS 

Mira Mezini', Linda Seiter" and Karl Lieberherr'" 

, Department o/Computer Science, Darmstadt University o/Technology Wilhelminenstraj3e 7, 
D-64283 Darmstadt, Germany. email: mezini@inlormatik.tu-darmstadt.de 

** Department o/Computer Engineering, Santa Clara University, Santa Clara, CA 95053, 
USA. Email: Iseiter@Scu.edu 

**' College o/Computer Science, Northeastern University, Cullinane Hall, 360 Huntington 
Avenue, Boston, Massachusetts 02115, USA. email: lieber@ccs.neu.edu 

Keywords: Business process integration, separation of concerns, object-oriented frame­
works, component-based programming, component integration 

Abstract: In this chapter we address object-oriented component integration issues. We 
argue that traditional framework customization techniques are inappropriate 
for component-based programming since they lack support for non-invasive, 
encapsulated, dynamic customization. We propose a new language construct, 
called a pluggable composite adapter, for expressing component gluing. A 
pluggable composite adapter allows the separation of customization code from 
component implementation, resulting in better modularity, flexible 
extensibility, and improved maintenance and understandability. We also 
discuss alternative realizations of the construct. 

1. INTRODUCTION 

Component software, i.e., software that is an assembly of individual, 
independently developed parts, is becoming the predominant architecture. 
We consider two factors as the driving force behind this development. First, 
as indicated in [23] component software represents a middle path between 
the two extremes that predominate traditional software development: (a) 



www.manaraa.com

326 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

custom-made software, i.e., software that is developed from scratch with 
only the help of tools/libraries and (b) standard software, i.e., prefabricated 
complete solutions that can only be parameterized to get close enough to 
what is needed in a particular scenario [23]. 

The first approach has the advantage that the resulting software optimally 
supports the specific needs of the particular customer, i.e. competitive 
strategic decisions, as well as changes in the business process. However, it 
has severe cost, along with maintenance and evolution problems that make it 
practically obsolete. The opposite is true for the second approach. While it is 
certainly the more effective approach, it results in solutions that totally 
ignore the needs of particular customers and their strategic decisions. 
Component software combines the advantages of the traditional approaches 
while avoiding their problems: most of the individual components can be 
standard solutions with all the advantages that this brings, while on the other 
side customer-specific strategic decisions can be individually satisfied by 
integrating custom-made parts and adapting the standard components during 
the assembly process. 

The second factor in favor of component software is that most of the 
effort in developing an enterprise application actually goes into the 
development of business logic that is shared across the application's vertical 
domain. Feedback from companies that plan to deliver applications based on 
IBM's SanFrancisco framework - a Java-based collection of components that 
allows developers to assemble server-side business applications from 
existing parts - indicates that as much as 80% of their development cost is 
spent writing and supporting the basic, non-competitive functions that are 
essentially the same for any application solution offered in a specific domain 
[21]. In such conditions, the benefits of concentrating the fabrication of the 
shared functions in a few components and reusing them across domains is 
obvious. This observation has actually driven the SanFrancisco project - one 
of the few server-based component frameworks today. 

Now, if we consider component-based development to predominate 
server-based solutions, the architecture of server-side software resulting 
from this development will have more or less the layered structure in Figure 
1. The figure is a slightly modified version of that representing the structure 
of SanFrancisco-based server systems found in [21], which shows the 
architecture for Java server-side software. However, the architecture is 
language independent, provided that server-side component models for 
component transaction monitors similar to Enterprise JavaBeans [22] are 
available for these languages. 

The interest of our work is in the boundary between the upper two 
horizontal layers. Software parts in the core business processes layer (object­
oriented frameworks or EJB components in a Java setting, e.g., for the 



www.manaraa.com

COMPONENT INTEGRATION WiTH PLUGGABLE COMPOSiTE ADAPTERS 327 

domain of Warehouse Management) are provided by component vendors. 
They model partial solutions while leaving open application-specific details. 
Software building blocks in the top layer are developed by application 
developers preferably independent of the components in the lower layer. In 
an end-product, the elements from these two layers obviously need to be 
coded into a single solution. 

!""'. ~ GUI i application developers business model/rules 
; focus on i,nnovati,on,' applica tion uniqueness 
1 product differentiation country specifics 

I :~::~'"' ~ competitive strategic decisions 

! I Common Business Objects: 

1 i Common Processes: tracki I ' l JVM 
; plattform + :"""""!JI!iiiii!!jjij!Jl!iiiii!!jjijiili,~!JI!iiiii!!jjij!Jl!iiiii!!jjij!Jl!iiiii!!jjij!Jl!iiiii!!jjij!Jl!iiiii!!jjij!Jl!iiiii!!jjij~ 
i wiring, gc, i 

: dynamic linking, (CORBA, COM), EJB containers 
i security, 
: persistence Server Platforms: 
: .. , .. /> (NT, OS/400, Sun Solaris, HP-UX, UNIX, '" ) 

Figure 1: Server-side component software 

In order to ensure that full-advantage is taken from the component-based 
architecture, it is important that the integration technique satisty the 
following requirements: 

- The integration process should work with independently developed 
components. Pre-fabricated components from the core business processes 
layer may in general be the product of different vendors. Furthermore, 
components in the core business processes layer should be independent of 
the application-specific components found in the upper-most layer. The 
application developer might have legacy code (e.g., class libraries) that 
he/she wants to integrate into the end-product. This requirement implies 
that the integration process should tolerate incompatible interfaces among 
the components to be integrated. 

- The integration technique should enable flexible (dynamic) 
reconjiguration of the integrated system. This implies easy integration of 
new components into an integrated setting to reflect changes in the 
business structure, as well as dynamic reconfiguration to enable dynamic 
adaptation of the system's behavior. Individual components often come in 
different implementations and it is necessary to dynamically switch 



www.manaraa.com

328 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

between these different flavors. Furthermore, it makes sense to plug 
certain components in and out depending on runtime conditions. 

Cross domain business logic will most likely be modeled as object­
oriented frameworks: business processes in the SanFrancisco project are 
indeed modeled as application frameworks. Thus, the end-product of 
component-based application development will typically include several 
frameworks, as well as class libraries containing either legacy code or 
application-specific functionality, e.g., encoding the business structure of the 
particular application. However, traditional framework-based development is 
based on reuse by extension [12]. Frameworks are generally developed to be 
deployed by newly written application specific code. For instance, the 
techniques used for building SanFrancisco framework-based applications 
[21] are based on a mixture of subclassing and aggregation (class- and 
object-based composition). 

We argue that traditional framework-based development does not 
properly support the requirements posed above for component integration 
techniques. Similar observations about problems with framework 
composition are made in [12]. We argue that given the importance of the 
integration process, object-oriented languages should provide explicit 
constructs for capturing abstractions in this process. We propose to extend 
object-oriented languages with an explicit scoping construct for component 
integration, called a Pluggable Composite Adapter. Having a dedicated 
construct for capturing the component integration apart from the code that 
models business logic improves the modularity of the end-product. 
Integration of new components into the system is equivalent to defining a 
new adapter: the implementation of the existing parts is not affected by the 
integration. Adapters are first-class objects in this model thus supporting the 
dynamic reconfiguration of the system. By being themselves components, 
adapters can be aggregated into more complex building blocks. Furthermore, 
refinement techniques 'a la inheritance apply. We have developed a 
prototype implementation of the Pluggable Composite Adapter in Java. 

The remainder of the chapter is organized as follows. In Section 2, we 
present a running example to demonstrate the shortcomings of traditional 
component composition techniques. The pluggable composite adapter model 
is presented in Section 3. Section 4 briefly presents the current prototype 
realization of the model in Java and outlines possible alternative realizations. 
Related work, a summary of the paper and areas of future work, are 
discussed in Section 5. 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 329 

2. TRADITIONAL OBJECT-ORIENTED 
COMPOSITION TECHNIQUES 

In this section we demonstrate the problems arising from traditional 
component integration techniques in terms of a running example. A more 
general discussion of framework composition issues can be found in [12]. 

Assume we are given a component that encodes the process of price 
calculation in the domain of order processingl. The component is part of a 
framework for order processing systems. It is intended to be customized by 
different applications to customer-specific pricing schemes. 

abstract class LineltemRole 
//abstract structure mapping methods 
abstract PricerRole pricerO 
abstract CustomerRole customerO 
abstract Item Role itemO 

~---------------------~ 
I double basicPrice = pricerO·basicPriceO; I 
I double discount = pricer~.discountO; I 
I ~~~~eu~iti~~~e+=it~~i).a~~~i~n~lic~~~~~;u~ft~~~~~~Uantity()); I l ______________________ J 

abstract int quantityO _T ----/Jconcrete template methQ,d _ - abstract class CustomerRole 
double priceO .--

abstract class Item Role 

Ilabstract structure mapping method 
abstract ChargerRole chargeO 

/leonerete template method 
double additionalCharge(double unitPrice, int qty) { 

return chargeO.cost( qty. unitPrice.this); 
} 

abstract class PricerRole 

abstract double basicPriceO 
abstract double discountO 

Figure 2: Pricing framework class model 

Figure 2 contains the pricing framework component. LineltemRole is 
responsible for calculating the actual price of a line item purchased by a 
customer. PricerRole provides price and discount information for the item and 
customer encapsulated by LineltemRole. Item Role is responsible for 
calculating additional charges, defined in ChargerRole. Figure 2 also defines 
the collaboration required to compute the price of a line item. The price and 
additionalCharge methods are template methods that define the message and 
data flow of the collaboration. The primitive operations (basicPrice, discount, 
etc.) are abstract, to be filled in with an application-specific implementation. 

The class diagram modeling the business model of an example 
application, a product component, is shown in Figure 3. Assume we wish to 
deploy the pricing component with the product application according to 
three pricing schemes. Each scheme requires the application component to 
conform to the framework component in a different way. 

- Regular Pricing: Each product has a base price that may be discounted 
based on quantity ordered. Quote plays the LineltemRole, while HWProduct 

The definition of this component is first described in [9]. 



www.manaraa.com

330 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

plays the ItemRole. In this pricing scheme HWProduct will also play 
PricerRole, implementing basicPrice, discount for regular pricing by calling 
regPrice and regDiscount, respectively. Tax plays the ChargerRole, 

implementing the cost method. Finally, Customer maintains the customer 
role. 

do 
do 

Quote 
HWProduct 

Order quotes ",product ...,. int quantity double regPriceO 
1.: double regDiscount(int qty, Customer c) 

double salePriceO 

cuslomer1 Y1t~~es 
Customer Tax 

uble negPrice(HWProduct p) double laxCharge 
uble negDiscount(HWProduct p, int qty) (int qty, double unitPrice, HWproduct p) 

Figure 3: Product application class model 

- Negotiated Pricing: A customer may have negotiated certain item prices 
and discounts. Quote plays the LineltemRole. Customer plays the PricerRole, 

implementing basicPrice, discount for negotiated pricing. Customer also 
plays the CustomerRole. HWProduc! plays the ItemRole. Finally, Tax plays 
the ChargerRole. 

- Sale Pricing: Each product has a designated sale price and no discounting 
is allowed. Quote, HWProduct, Tax and Customer play the same roles as they 
do with the regular pricing scheme. However, HWProduct will implement 
basicPrice and discount for sales pricing rather than regular pricing, i.e., by 
calling salePrice and returning zero respectively. 

The traditional framework deployment technique uses static inheritance 
to model plays-the-role-of mappings. For example, the regular pricing 
scheme would require Quote to be redefined as a subclass of LineltemRole, 

HWProduc! to be redefined as a subclass of both Item Role and PricerRole, etc. 
Note that each of the three pricing schemes requires multiple inheritance. In 
languages that do not support multiple inheritance, e.g., Java, some of the 
mappings would be established indirectly using a technique such as the 
adapter design pattern [5]. Framework deployment using static inheritance 
has three drawbacks. First, it is invasive in that it requires modification of 
the application classes to encode the customization and the inheritance 
relationships. Second, it does not encapsulate the multiple roles of the 
pricing scheme into a single construct, as the roles would be spread out 
among the various application classes. Third, it is static in that it restricts the 
product application to a particular pricing implementation at the point of 
Quote class instantiation. 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 331 

Accommodating all three pricing schemes and allowing an application to 
dynamically switch between them by applying design patterns [5] results in 
the design given in Figure 4. Classes that were present in the original 
application model are represented in Figure 4 by the non-filled rectangles. 
The adapter pattern [5] is used in two places to adapt the interfaces of 
HWProduct and Customer to their PricerRole (the adapter classes 
HWProduct_PricerRole and Customer_PricerRole, respectively). The strategy 
pattern is used to model the three pricing variants (regular, negotiated, and 
sale) of the LineltemRole played by Quote. Each of these classes is 
parameterized with a different PricerRole adapter (Reg Pricer, SalePricer, and 
Customer_PricerRole, respectively). Finally, there will be facade classes for 
the price calculation according to each scheme. Each of these classes would 
implement the method price(Quote q) by setting the appropriate strategy and 
adapter objects for the quote argument, and then invoke priceO on it. The 
facades are not shown in Figure 4 due to lack of space. 

The figure indicates several shortcomings of traditional object-oriented 
framework composition techniques. First, deployment of the pricing 
functionality with the product application requires the modification of the 
application classes. That is, it is not possible to apply newly acquired 
business processes to existing objects. Second, the integration of the pricing 
component results in a proliferation of classes and spurious relations in 
which the original design gets lost. The clarity of the design is damaged 
because the code responsible for one customization is not localized in one 
place, but rather spread around several new adapter, strategy, or facade 
classes as well as in the original classes. The resulting tangled code is 
difficult to understand, maintain and extend with new components. This is 
especially true in a real-life scenario where many business objects and 
processes can be expected to be involved. To summarize, one could say that 
the design in Figure 4 suffers from poor modularity. 

Recall that it is desirable to non-invasively integrate new components 
into an application in such a way that the newly integrated functionality can 
be used with existing objects. This can be realized by advanced design and 
implementation techniques that combine several simple design patterns. We 
have presented such a design technique and an elegant implementation of it 
in [16]. The technique, called the composite adapter design pattern, is a 
generalization of the original adapter pattern [5] that supports the adaptation 
of collaborative functionality. The original adapter pattern, whose structure 
is given in Figure 5, solves the problem of adapting the interface of a single 
pre-defined class (Adaptee in Figure 5) to match the interface of a single 
class in a framework (Target in Figure 5). 



www.manaraa.com

j ~
 

~
 §; o· ::s

 e:..
 

::p
 a (]

) ~ * 0- .g
 ~ (]) g 

P
ric

er
R

ol
e 

C
us

to
 m

er
R

ol
e 

L
in

e
lte

m
R

o
le

 
w

 
W

 
N

 ~ ~ ~ ~
 

;:.:
, g .....
. t;J (
j 

'-3
 ~ V
i 

:>:.
. ~ ~ ~ ~ ~ '-3
 t;;3
 g ~ a Q

 
~
 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 333 

However, the pattern does not deal with collaborations (composite object 
adaptation) and the typing issues that arise when one needs to map a set of 
target classes to a set of adaptee classes. Note that the sample interface used 
in the structure of the pattern has no return values or parameters. What if the 
signature of specificRequest was SpecificReturnType specificRequest 

(SpecificArgType1, ... SpecificArgTypen), where SpecificReturnType and 
SpecificArgType1, ... ,SpecificArgTypen are types in the domain of the class 
model that defines Adaptee? These issues are not considered by the original 
adapter pattern, however they are solved by the composite adapter technique 
described in [16]. The composite adapter technique provides a means for 
integrating collaborative functionality and business processes into existing 
app lications. 

EJ Target ad 

RequestO 

extends 

Adapter 

aptee Adaptee r SpecificRequestO 

1--------, 
RequestO = J adaptee.SpecificRequestO; I 

-----------' 
Figure 5: The structure ofthe original OOF adapter design pattern 

Figure 6 shows the composite adapter design pattern technique applied to 
the integration of sample Java framework and application components. We 
summarize the technique as follows. Assume we want to integrate the 
functionality implemented in the Framework package into the application 
class model given in the Application package. There will be a composite 
adapter responsible for this integration (AppJrm_CompositeAdapter), which 
will have a nested class adapter defined for each framework class 
(RootAdapter, ChildAdapter). Each nested adapter extends a framework class, 
implementing it in terms of an application class. Thus, each nested adapter 
maps the interface of an application class (referenced by adaptee) to the 
interface of the framework class that it extends. 

The nested adapters RootAdapter and ChildAdapter are essentially adapters 
in the sense of the original adapter pattern [5]. However, the nested adapters 
must also take care that application objects (AppRoot, AppChild) that come 
into the scope of the nested code must be wrapped by the corresponding 
class adaptation (RootAdapter, ChildAdapter) before being operated on. The 
class adaptations represent dynamic extensions of the application classes, 
thus the application class instances should appear to acquire their dynamic 
types while they are referenced within the composite adapter 
implementations. 



www.manaraa.com

i ~ ~
 I .g f ~ s:- o 8 ,g o U

l s-. f 

re
tu

rn
 n

ew
 R

oo
t.6

.d
ap

te
rO

; 

R
oo

tA
da

pt
er

 f
r 
=

 (R
oo

t.6
.d

ap
te

r)
 

ro
ot

.6
.d

ap
te

rF
ac

to
ry

 .l
'K

ap
(a

r)
 

re
tu

m
 f

r.
te

m
pi

at
eO

; 

A
pp

C
hi

ld
 a

e 
=

 a
da

pt
ee

.a
pp

C
hi

ld
O

; 
re

tu
m

 (
Fr

m
C

h 
ild

) 
eh

 ii
dA

da
pt

er
Fa

et
or

y.
 w

ra
p 

(a
e)

 ; 

A
da

pt
er

F
ac

to
ry

 
O

bj
ec

t 
ad

ap
te

r 
=

 a
d

ap
te

e_
ad

ap
te

r.
g

et
(o

b
j)

;l
 

H
as

ht
ab

le
 a

da
pt

ee
_a

da
pt

er
 

l/
t 

if 
(a

da
pt

er
 =

 n
U

ll)
 {

 

A
da

pt
er

O
bj

ec
t 

w
ra

p(
O

bj
ec

t)
 

.r
 

ad
ap

te
r 

=
 c

re
at

eO
; 

ad
ap

te
r.

se
tA

da
pt

ee
(o

bj
);

 
A

da
pt

er
O

bj
ec

t c
re

at
eO

 
ad

ap
te

e_
ad

ap
te

r.
pu

t(
ob

j,
 a

da
pt

er
) 

;}
 

/\
-

re
tu

m
 (

A
da

pt
er

O
bj

ec
t)

 a
da

pt
er

; 

r-
--

--
--

L-
--

--
-~

 
==
'-
--
--
--
--
--
~ 

I 
R

oo
tA

da
pt

ec
F

ac
to

ry
 

I 
f 

C
hi

id
A

da
pt

er
 _F

ac
to

ry
 

I 

~!
~~

~~
!f

~~
~~

2~
~j

 L
~~

~~
!~

~~
~~

~~
~~

~ 
re

tu
m

 n
ew

 C
h

ii
d

A
d

ap
te

ro
l 

.r
oo

tA
da

pt
er

F
ac

to
ry

 
eh

ii
dA

da
pt

er
F

ae
to

ry
 

Fr
m

C
hi

id
 f

rm
C

hi
ld

O
 

A
pp

C
hi

id
 a

c 
=

 (A
pp

C
hl

ld
) 

«C
hi

ld
 A

da
pt

er
) 

fc
).

ge
t.6

.d
ap

te
eO

 
ad

ap
te

e.
 m

et
h_

l (
ac

);
 

w
 

w
 
~
 &
 

~ ~ R; ~
 

~
 ~ q q ~ V5
 

:....
 f§ g ~ ~ ~ ..., t;;3
 ~ ~ t-'<
 8 ""'

C 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 335 

The application objects acquire their dynamic types by being wrapped by 
the nested class adapter objects (see e.g., the implementation of frmChiidO in 
RootAdapter in Figure 6. The creation of class adapter objects is done by 
factories that memorize the established adapter-adaptee relations, 
(RootAdapterJactory and ChildAdapterJactory shown in the dashed rectangles 
in Figure 6 to indicate that they are created within AppJrm_CompositeAdapter 
as anonymous inner classes of the predefined AdapterFactory). 

The solution in Figure 6 does indeed satisfy the requirement that the 
application can be developed independently from the framework2• However, 
the structure of the adapter is complex and the technique is too advanced to 
expect it to become a common tool in the toolbox of an average 
programmer. One should not forget that patterns are conventions that need to 
be followed, as such they are not enforced by the language and cannot 
simply be assumed by average programmers [8, 2]. A better alternative 
would be to establish some kind of "plays-the-role-of'1 wiring relationship 
between classes in different components independently of the component 
implementations. It is exactly here that the Pluggable Composite Adapter 
construct comes into play. 

3. PLUGGABLE COMPOSITE ADAPTERS 

Given the importance of the integration process in component-based 
development, we argue that it should be supported by dedicated language 
constructs, and propose to extend object-oriented languages with the 
pluggable composite adapter construct to serve this need. 

Before outlining the features ofthis construct, however, let us first briefly 
define the term component as it is understood in the context of this paper. As 
indicated by the discussion so far, we understand a component to be a set of 
(collaborating) classes that define some (incomplete) functionality. In 
general, a class model could be captured by some module construct such as a 
Java package. However, it is preferable for a component to be a closed entity 
with well defined expected and provided interfaces [23, 15]. Java packages 
are not closed entities in the sense that one can change the interface of a 
package after it is defined by simply implementing new classes and 
declaring them as members of the package. Examples of closed component 
constructs are Adaptive Plug & Play Components (AP & PCs) proposed in 
[15], and the generalized class model in Java, where classes can be nested 

2 The technique has been originally formulated for framework-application integration, but it 
can be easily extended to serve the case when two fully-implemented components are to 
be integrated (replacing the inheritance links by usage links). 



www.manaraa.com

336 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

into other classes. In this section we will indicate the advantages of having a 
component be a closed entity. However, to avoid restricting the applicability 
of the composite adapter construct to non-mainstream models such as AP & 
PCs [15] or making the use of Java inner classes a precondition, in the 
following we will use the term component as equivalent to package and 
silently assume that once a package component is defined its interface 
remains stable. 

Having clarified our use of the term component, let us now turn back to 
the composite adapter construct. In its simplest form, a pluggable composite 
adapter defines how to extend a component C1 with a new concrete 
collaboration. This use of the pluggable composite adapter is also called 
component adaptation. In addition, a pluggable composite adapter may 
define how to glue together two independently developed components C1 
and C2, where C2 is an abstract collaboration. The gluing extends C1 with a 
concrete realization of the abstract collaboration C2 in terms of the 
functionality provided by C1. We call this use of the pluggable composite 
adapter construct component gluing. 

A collaboration involves a set of objects that work together to implement 
a task, where each object plays a particular role. Hence, extending a 
component with a collaboration will require the adaptation of several classes 
in the component to the appropriate collaboration roles. New variable, 
method, and class definitions might be needed in order to realize the 
component adaptation. Hence, the structure of a pluggable composite 

. adapter presented in Figure 7. The nested adapters (i.e., adapter R adapts C1.B 

[extends C2.S] adaptation_body in Figure 7) are called class adapters because 
they specify the adaptation of a single class B of component C1 to its role R. 
The enclosing adapter A is called a composite adapter, as it nests a set of 
class adapters. The component C1 is referred to as the base component 
(hence the denotation B for classes in this component). In the case of 
component gluing, the abstract collaboration C2 that the base component is 
being adapted to is referred to as the super component (hence the denotation 
S for its classes). 

The attribute pluggable reflects the fact that the component 
adaptation/gluing encoded within a composite adapter may be plugged in 
and out as needed. Several alternative realizations of the composite adapter 
construct may differ on whether the process of plugging in/out is dynamic or 
not. In this section we present the dynamic flavor of the composite adapter, 
while alternative flavors will be briefly outlined in the following section. 
"Dynamic" means: C1 objects are adapted on the fly to play the roles in the 
collaboration without physically changing C1'S classes. A composite 
adapter's instances will dynamically lift instances of classes in the base 
component to the types defined in the nested class adapters (hence, to the 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 337 

types in the super component in the case of component gluing, since the 
latter will be supertypes of the nested class adapters). A composite adapter's 
instances will likewise dynamically lower the previously lifted base 
instances, restoring them to their original types as necessary. In other words, 
the composite adapter serves as a "simulation" of the abstract model it 
defines or extends in terms of the concrete model of component C1. 

adapter A { 
Field Method Defs - -
Helper_Class _ Defs 
{ adapter R adapts C1.B [ extends C2.S ] adaptation_body} * 

Figure 7: The structure of the pluggable composite adapter construct 

The extends clause is put within brackets in Figure 7 to indicate that it is 
optional. In the following, we present the main concepts of the pluggable 
composite adapter model by considering first the case when there is no 
extends clause, i.e., the case of dynamic component adaptation in which the 
adapter directly implements a concrete collaboration. We will subsequently 
consider dynamic component gluing in which the extends clause will be used 
to support the concrete realization of the abstract collaboration given in the 
super component. 

3.1 Dynamic Component Adaptation 

In Figure 7, a class adapter adapter R adapts C1.B adaptation_body implies 
an adaptation of the functionality of base component class C1. B by the code 
in the adaptation_body. The adaptation_body encodes the delta by which we 
would have to enhance the definition of class C1.B to play the given 
collaboration role R if we used static subclassing, or if we modified the 
implementation of C1.B in-place. However, the dynamic version of the 
adapts relation implies neither an in-place modification of C1.B, nor does it 
create a new subclass of C1.B. Via the adapts relation we define a "dynamic" 
extension of C1.B, meaning that (existing) objects b: C1.B appear to acquire 
the extension given in adaptation_body. 

The adaptation_body can be thought of as written in terms of three "self 
variables" (with the following precedence): R.this (the role environment), 
B.this (the base or adaptee environment), and A.this (the composite adapter 
environment). All three self variables provide environments for binding 
variable and method definitions. That is, (a) the definitions in the nested 
class adapter R, (b) the definitions in base component class C1. B, and ( c) the 
definitions in the enclosing composite adapter A (Field Method Defs, Helper 

Class Defs) are within the scope of the adaptation body. 



www.manaraa.com

338 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

For illustration, Figure 8 shows an example of component adaptation in 
which the regular pricing collaboration is being defined for the product 
component (cf. Figure 3). The composite adapter Reg_Pricing_Product in 
Figure 8 implements a nested class adapter for each role in the collaboration, 
namely LineltemRole, CustomerRole, Item Role, ChargerRole and PricerRole. Each 
nested class adapter implements a collaboration role in terms of a Product 

component class, specified using the adapts relation. In this example, we 
assume the abstract pricing framework of Figure 2 has not yet been 
developed. Thus, we are intentionally hardwiring the regular pricing 
algorithm within the Reg_Pricing_Product adapter - the methods priceO within 
LineltemRole and additionaICharge( ... ) within ItemRole. 

Note how the adaptation body within nested class adapters, e.g., 
LineltemRole has three implicit self references: LineltemRole.this, Quote.this, 

and Reg_Pricing_ProducUhis. For instance, the priceO method in LineltemRole 

calls operations defined in LineltemRole itself, e.g., pricerO, while itemO calls 
the productO operation defined in Quote. If there were composite adapter level 
method or variable definitions they could as well be referred to from within 
any adaptation body via Reg_Pricing_ProducUhis. As long as there are no 
ambiguities self references remain implicit. For instance, we simply call 
productO within the implementation of itemO in LineltemRole, implicitly 
meaning Quote.this.productO. If there are ambiguities, as in the case of the 
quantityO operation which is defined in both LineltemRole and Quote, we 
override the default precedence of the self reference, i.e., LineltemRole.this by 
explicitly delegating to the Quote.this self reference. 

In contrast to the other two self variables, Re9_Pricing_ProducUhis has a 
second role in addition to serving as a name binding environment. The 
second role of Reg_Pricing_ProducUhis is in the implicit type lifting/lowering 
within the adapter scope. For illustration, consider the implementation of 
itemO in the LineltemRole class adapter. One might expect a type mismatch 
between the result of invoking productO - assuming it to be HWProduct - and 
the return type of itemO, which is ItemRole. However, there is no such 
conflict. This is because within Reg_Pricing_Product the type Item Role is 
defined as an adaptation of the base type HWProduct. As the result, the 
composite adapter views any HWProduct that comes into its scope, e.g., the 
return value of calling productO, as automatically acquiring its item role in 
the pricing collaboration - the base object returned by productO will be 
automatically lifted to the expected Item Role. 

The key point in understanding type lifting/lowering is that individual 
class adapters make sense only within the scope of the enclosing adapter. 
The latter is not merely a syntactic construct for encapsulating adaptations 
for the classes involved in a collaboration (in general, a business process). 
The enclosing class adapter has an important semantic function: it defines a 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 339 

"functor" that converts types from the base component's domain to the types 
defined within the nested class adapters (and thus to the types in the super 
component's domain in the case of component gluing) and vice versa. In 
other words, the composite adapter lifts objects from the base component's 
domain as they come into its scope, and subsequently lowers them as they 
leave its scope. In the following, we informally describe the semantics of 
type lifting / lowering and the role that A this plays in this process. 

In addition to binding composite adapter level variable and method 
definitions, the composite adapter self reference A this also provides an 
environment for resolving type references within the composite adapter. This 
type environment is defined by the adaptationsOfA function in Figure 9 which 
maps types from the base component C1'S domain to sets of types in the 
composite adapter A's domain. Given, C1.B, adaptationsOfA(B) includes any 
A.R defined as an adaptation of either C1.B itself or one of its superclasses in 
C1. For instance, given the composite adapter Reg_Pricing_Product in Figure 8 
(RPP for short), adaptationsOfRPp(HWProduct) is the set { Item Role, PricerRole }. 

Given the type environment A this of a composite adapter A, type conversions 
within A obey the rules given in the following paragraphs for type lifting and 
type lowering. 

Type lifting. Let b be an object of the base type C1.B and assume that b 

comes into the scope of an adaptation body nested within adapter A in a 
context where an object of type AR (or of the supertype of AR in C2, if AR is 
defined by an adapts ... extends construct) is expected. An object of base type 
C1.B comes into the scope of an adaptation body as the result of either (a) 
invoking an operation that returns an object of type C1.B, or (b) directly 
instantiating C1.B. If A.R E adaptationsOfA(C1.B) then b will automatically be 
lifted to the role type AR. Otherwise, a compile-time error occurs. 

For illustration, consider the methods itemO and pricerO in LineltemRole in 
Figure 8. They both call product() operation from Quote. Both invocations of 
product() cause a HWProduct object to come into the scope of the composite 
adapter Reg Pricing Product. However, within item() the HWProduct object will 
be lifted to ItemRole since it comes into scope in a context where an Item Role 

instance is expected, while within pricer() the same HWProduct object will be 
lifted to PricerRole since it comes into scope in a context where a PricerRole 

object is expected. Both liftings are possible, hence the code is valid, since 
both PricerRole and Item Role are adaptations of HWProduct. 

Lifting b: C1.B to AR means: (a) finding the most specific subtype of R in 
A, AR', such that AR' E adaptationsOfA(C1.B) and (b) binding all three "self 
variables" implicitly referred to within the adaptation body of R, R'.this, its 
corresponding base "self" B.this, and the enclosing composite adapter 
instance within which the lifting takes place A.this. The relationship between 
R'.this and Athis is essentially the conceptual relation between a Java inner 



www.manaraa.com

340 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

class instance and the enclosing toplevel class instance. The question 
remains what is the semantics of the B.this-R.this binding. This binding is 
realized as an aggregation in the current implementation of the adapter 
construct. That is, an instance of R' is created and some adaptee reference of 
this instance is intialized with B.this. Other alternatives are discussed in the 
following section. 

import product; 
adapter Reg]ricing]roduct { 

adapter LineItemRole adapts Quote { 

} 

protected ItemRole item ( ) { return product ( ) ; } 
protected CustomerRole customer ( ){ return customer ( ); } 
protected PricerRole pricer ( ) { 

} 

PricerRole pr = product ( ) ; 
pr . setQty ( Quote. this . quantity ( ) ) ; 
pr . setCustomer ( Quote. this . customer ( ) ) ; 
return pr; 

protected int quantity 0 { return Quote. this. quantity O;} 
public double price ( ) { 

double basicPrice = pricer () . basicPrice ( ) ; 
double discount = pricer ( ) . discount ( ) ; 
double unitPrice = basicPrice - ( discount * basicPrice ); 

return un i t P ric e + 
item ( ) . additional Charge ( unitPrice , quantity ( ) ) ; 

adapter CustomerRole adapts Customer { } 
adapter ItemRole adapts HWProduct { 

} 

protected ChargerRole charge ( ) { return tax () ; } 
double additional Charge ( double unitPrice, int qty ) { 

return charge ( ) . cost ( qty , unitPrice, this) ; 
} 

adapter ChargerRole adapts Tax { 
protected double 

} 

cost ( int qty , double unitPrice, ItemRole item) { 
return taxCharge ( qty , unitPrice, item) ; 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 341 

adapter PricerRole adapts HWProduct { 
private int qty ; 

} 

private Customer customer; 
public void setQty ( int quantity) { qty = quantity;} 
public void setCustomer ( Customer cust) { customer = cust ;} 
protected double basicPrice () { return regPrice ( ) ; } 
protected double discount ( ) { 

return regDiscount ( qty , customer) ; } 

Figure 8: Regular pricing - dynamic component adaptation 

Lifting b: C1.B to AR means: (a) finding the most specific subtype of R in 
A, AR', such that AR' E adaptationsOfA(C1.B) and (b) binding all three "self 
variables" implicitly referred to within the adaptation body of R, R'.this, its 
corresponding base "self" B.this, and the enclosing composite adapter 
instance within which the lifting takes place A.this. The relationship between 
R'.this and A.this is essentially the conceptual relation between a Java inner 
class instance and the enclosing top level class instance. The question 
remains what is the semantics of the B.this-R.this binding. This binding is 
realized as an aggregation in the current implementation of the adapter 
construct. That is, an instance of R' is created and some adaptee reference of 
this instance is intialized with B.this. Other alternatives are discussed in the 
following section. 

Finally, it should be noted that the composite adapter A "remembers" the 
result of lifting a base object b: C1.B to its role AR. That is, if b goes in and 
out of the scope of A several times during the execution of operations 
defined in A, it will not be lifted to different AR role adapter objects, i.e., the 
invocation history in the context of A does not get lost. This is crucial as the 
class adapter may add role-based state to the base object. 

C L K: the domain of classes defined in C] 
:S;CLK: the subtype hierarchy in C] 
A _ CA: the domain of class adaptations defined in A 
adaptations Of A : CL K ~ peA _ CA): a function defined for all B E CL K by 

adaptationsOfA(B) = {R E A_CA I B adaptedToA R} 
adaptedToA k CLK x A_CA: a binary relation, defined for all BE CLK and 

RE A_CA by 
C].B adaptedToA A.R ¢::> 

3SBE CLK:B:S;C] KSB /\ 
adapter R adapts SB [extends C2.S] adaptation_body E A 

Figure 9: The composite adapter type environment 



www.manaraa.com

342 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Type lowering. Any class adapter object r: AR that was created as the 
result of lifting base object b:C1.B to AR should be lowered back to type C1.B 
before it can leave the adapter scope. This occurs when within the adaptation 
body of some nested class adaptation the role object r is either (a) passed as a 
parameter into an operation defined in any of the classes in base component 
C1, or (b) an operation defined in class C1.B is directly invoked on the role 
object r. Lowering r back to type C1.B results in the original base object b. 

For illustration, consider the implementation of cost(int qty, double 
unitPrice, Item Role item) within ChargerRole in Figure 8. Passing cost's 
argument item as the third actual parameter to Tax.taxCharge(int qty, double 
unitPrice, HWProduct p) implies an automatic lowering of item: Item Role to its 
base product.HWProduct object. 

The commutative diagram in Figure 10, summarizes the relation between 
the type lifting and lowering performed within the scope of a composite 
adapter. In the diagram ASR (Adapter-level Structural Relation) stands for a 
structural relation between two types defined in a composite adapter, AR and 
AR', whereby the relation is realised via a structure mapping method. For 
instance, item: LineltemRole ~ Item Role, item(li) = li.itemO, is an example for an 
ASR (cf. Adapter in Figure 8). On the other hand, BSR (Base-level 
Structural Relation) is the (eventually computed) structural relation between 
two base types, C1.B and C1.B', where R E adaptationsOfA(B) and 
R' E adaptationsOfA(B'), that implements ASR. For instance, 
product: Quote ~ HWProduct, product(q) = q.productO is the base structural 
relation that implements the adapter structural relation item. Given b: C1.B, 
the diagram imposes that BSR(b) = b' : C1.B' = lower(ASR(lift(b))). 

ASR 
A.R ----------1 ... ~ A.R' 

tif/ lower 1 
I BSR 

CI.B -------I~~ CI.B' 

Figure 10: The relation between type lifting and lowering operations 

Plugging adapters in at runtime. Given a composite adapter A that adds 
a collaboration to a component C1 and assuming that the root of the 
collaboration is a class adapter RR (for root role), a composite adapter 
instance a: A is dynamically applied to a base object b: C1.B, where 
RR E adaptationsOfA(C1.B), by means of the liftTo operator (b liftTo a). Note that 
we are assuming that there is a single adaptation class for C1.B in A. If there 
are several class adaptations for C1.B in A, the application operator would 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 343 

explicitly specifY which one to use: b liftTo a.aRoleTypeName. As the result of 
the adapter application, a new class adapter instance for RR gets created. 

Assuming that the root role class adapter defines the public method m, we 
can invoke m on the base instance by executing the invocation expression (b 

liftTo a).mO. The adapter a: A transforms the base objects of component C1 that 
are encountered during the execution of method m into their lifted types in a 
"lazy way": new class adapter instances are created only when base objects 
come into a's scope. All class adapter instances created this way share the 
same composite adapter. 

public class Client{ 

} 

static public void main ( String [ ] args ) { 
Quote q = new Quote ( ... ) ; 
Reg]ricing]roduct rpp = new Reg]ricing]roduct ( ) ; 
System. out. println ( ( q liftTo rpp ) . price ( ) ) ; 

Figure 11: Class adaptation 

For illustration, Figure 11 contains sample client code that dynamically 
plugs in the functionality of the Reg_Pricing_Product adapter. This allows the 
regular pricing functionality to be available to the quote object q. 

3.2 Dynamic Component Gluing 

Given components C1 and C2, the existence of an extends clause in a 
nested class adaptation { R adapts C1.B extends C2.S ... } puts the classes C1.B 
and C2.S in a target-adaptee relation in terms of the adapter design pattern 
[5]. The nested class adaptation R expresses the relationship C1.B plays-the­
role-of C2.S. The adaptation body defined in class adapter R encodes the delta 
by which we would have to enhance the definition of C1. B if we used static 
subclassing to express the C1.B plays-the-role-of C2.S relationship. 

For illustration, the composite adapter for gluing the concrete product 
application of Figure 3 and the abstract pricing framework component of 
Figure 2 according to the regular pricing scheme is given in Figure 12. 
While the composite adapter in Figure 8 directly implemented the regular 
pricing collaboration, the adapter in Figure 12 only customizes the abstract 
part of the pricing framework of Figure 2 in terms of the Product component 
and inherits the collaboration encoded by the methods priceO and 
additionaICharge(oo.). Note again the implicit rebinding of types within the 
adapter scope. For instance, consider the return type ItemRole of itemO and 
the return type HWProduct of the productO method that is called within itemO. 



www.manaraa.com

344 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

There is no conflict here because the type HWProduct of the object returned 
by productO will automatically be lifted to its extension HWProducUtemRole 

defined within the enclosing adapter, Reg_Pricin9_Product, Since 
HWProducUtemRole is a subtype of Item Role, the return type of itemO is 
substitutable for the return type of productO. 

Note that in Figure 12 the class adapter PricerRole is nested within class 
adapter LineltemRole. Nesting class adapters into each other helps manage 
scoping issues. An inner class adapter has visibility for the definitions in the 
adaptation body of the enclosing class adapter, just like inner classes in Java 
can access definitions in the outer class. Clearly, nested class adapters can 
also be used for dynamic component adaptation - we could have made 
PricerRole in Figure 8 also a nested class adapter of LineltemRole. However, 
we preferred not to do so for the sake of keeping the discussion at that point 
as simple as possible and the reader's attention focused on the key features of 
the composite adapter construct, rather than being distracted by scoping 
issues. 

In Figure 8 instance variables are used in the definition of PricerRole to 
refer to the customer and the quantity values, for which a PricerRole 

calculates the basic and discount prices. These variables are initialized when 
a new PricerRole is created by a LineltemRole. The same values are brought 
more elegantly into the scope PricerRole instances in the implementation in 
Figure 12. By making PricerRole an inner role of LineltemRole, each PricerRole 

instance automatically shares the item, customer, and quantity values of its 
enclosing LineltemRole instance. Both implementations are valid, since the 
design of the pricing framework in Figure 2 simply indicates that given the 
item, customer and quantity values of a line item, the PricerRole will calculate 
a basic price and a discount, while leaving open how these values are 
brought into the scope of the PricerRole. 

3.3 The Adapter Construct at Work 

In the following, we show how the adapter construct improves the 
modularity and extensibility of systems that result from assembling several 
components (business processes) in terms of our running example. Along the 
way, new features of the pluggable composite adapter model will be 
introduced as needed. 

The main advantage of the adapter construct is that it facilitates the 
separation of concerns (functional ingredients of a system are separated from 
each other as well as the gluing concerns). This leads to improved 
modularity, hence, readability, maintainability, and more flexible 
extensibility. For illustrating these claims let us compare the effort required 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 345 

to integrate a new pricing scheme (in general a new business process or 
multi-object collaborative functionality) when using traditional composition 
techniques versus an adapter construct. Assume that we have integrated the 
product and pricing components (cf. The class models in Figure 2 and 3) 
according to the regular pricing scheme. During this integration we have not 
anticipated integrations of alternative schemes. Thus, the class model will 
include only the original product classes modified as subclasses of the 
corresponding framework classes, along with the single adapter class 
HWProduct_PricerRole (cf. Figure 4). 

import product; 
import pricing; 

adapter Reg]ricing]roduct { 

} 

adapter Quote _LineItemRole adapts Quote extends LineItemRole { 
protected ItemRole item () { return product () ; } 
protected CustomerRole customer ( ) { return customer ( ) ; } 
protected PricerRole pricer ( ) { return product ( ) ; } 
protected int quantity ( ) { return Quote. this. quantity ( ) ; } 

adapter HWProduct_PricerRole adapts HWProduct 

} 

extends PricerRole { 
public double basicPrice ( ) { return regPrice ( ) ; } 
public double discount ( ) { 

return regDiscount ( quantity ( ) , customer ( ) ) ; 

adapter Customer _ CustomerRole adapts Customer 
extends CustomerRole { } 

adapter HWProduct_ItemRole adapts HWProduct extends ItemRole { 
protected ChargerRole charge ( ) { return tax ( ) ; } 

} 
adapter Tax _ ChargerRole adapts Tax extends ChargerRole { 

public double 
cost ( int qty , double unitPrice , ItemRole item) { 

return taxCharge ( qty , unitPrice , item) ; 

Figure 12: Regular pricing - dynamic component gluing 

Now, assume we want to extend the system to support sale pricing. This 
extension will affect several places in the design in Figure 4, requiring a 



www.manaraa.com

346 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

subclass of HWProduct_PricerRole to be added, Quote to be modified to use a 
strategy object, a strategy class for PricingScheme to be added, along with the 
appropriate subclasses. Alternatively, in our model we can simply define a 
new composite adapter Sale_Pricing_Product by incrementally refining the 
existing composite adapter Reg_Pricing_Product that was given in Figure 12. 
The new adapter is shown in Figure 13. 

import product; 
import pricing; 

adapter Quote _ LineItemRole extends 
Reg_Pricing_Product. Quote_LineItemRole { 

adapter HWProduct_PricerRole adapts HWProduct 
extends PricerRole { 

public double basicPrice ( ) { return salePrice ( ) ; } 
public double discount ( ) { return a;} 
} 

Figure 13: Sale pricing composite adapter 

Adapters as extensions of other adapters. The meaning of the extends 
relationship between adapters is similar to the extends relation between 
classes in Java. Defining an adapter SA as a subadapter of adapter A means 
that SA (a) inherits all nested class adapters from A, (b) can define new 
nested class adapters, and (c) can override and/or incrementally refine class 
adapters nested within A. For instance, Sale_Pricing_Product inherits the 
Customer_CustomerRole, Tax_ChargerRole and HWProducUtemRole class 
adapters defined in the adapter Reg_Pricing_Product, while refining the 
definition of Quote_LineltemRole and overriding the HWProduct_PricerRole 

class adapter nested within Quote_LineltemRole. 

One can factor out the commonalities of all pricing schemes in an 
abstract adapter - Pricing_Product in Figure 14. Reg_Pricing_Product is then 
defined as an extension of it, by (a) incrementally refining the 
Quote_LineltemRole adapter with an implementation for pricerO and (b) 
defining a new class adapter, HWProduct_PricerRole nested within 
Quote_LineltemRole. A composite adapter is abstract if (a) one of its nested 
class adapters is abstract, or (b) there is an abstract class in the super 
collaboration for which no class adapter is defined within the composite 
adapter. For instance, Pricing_Product in Figure 14 is abstract because the 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 347 

class adapter Quote_LineltemRole is abstract (the abstract method pricerO from 
LineltemRole remains unimplemented). 

At the beginning of this section, we mentioned that it is preferable that a 
component construct be a closed entity with well-defined interfaces. One of 
the benefits of this feature is that the adapter compiler can check whether an 
adapter is abstract based on the criteria (a) and (b) above. 

Adapting an adapter. Adapters can also adapt other adapters, a feature 
that becomes very handy when business processes are layered on top of each 
other. An illustrative scenario is the following. Assume that after we have 
extended the bare business model of our hardware products supplier (cf. 
Figure 3) with the pricing functionality (cf. Figure 2), the integrated system 
needs to be further extended with the ability to calculate the total price of a 
given Order. Furthermore, assume that the generic component (a mini­
framework) whose class model is given in Figure 15 is available for 
calculating the sum of a certain value in a composite object structure. 
Summing is modeled in the diagram in Figure 15 as the template method 
sumO in Composite, while what is summed is left open (the method valueO in 
Elements is left abstract), as it will vary in different contexts where the 
summing component might get used. 

We would like to reuse the summing component in calculating the total 
of (regular, sale, or negotiated) price of an order. Finally, an order is a 
composite of quotes and after having integrated the pricing framework into 
the product package, we know that quotes can be lifted into line items, hence 
we can calculate their price which will be the value to sum. To integrate the 
summing component into the system (consisting of the product component 
integrated with the pricing collaboration) we define the new composite 
adapter Summing_Pricing_Product given in Figure 16. 

Note the declaration of Summing_Pricing_Product as an adaptation of the 
previously defined abstract composite adapter Pricing_Product. A composite 
adapter A that adapts another composite adapter SA dynamically extends SA 
instances with new nested class adapters, which may adapt either (a) SA's 
base component's classes, or (b) SA's class adapters themselves. For instance, 
Summing_Pricing_Product defines two class adapters: Order_Composite adapts 
the Order class in the base component of Pricing_Product, while Quote_Element 

adapts the class adapter Quote_LineltemRole defined in Pricing_Product. 



www.manaraa.com

348 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

import product; 
import pricing; 

abstract adapter Pricing_Product { 
abstract adapter Quote _ LineItemRole adapts Quote 

} 

extends LineItemRole { 
protected ItemRole item ( ) { return product ( ) ; } 
protected CustomerRole customer ( ) { return customer ( ) ; } 
protected int quantity ( ) { return Quote. this. quantity ( ) ; } 

adapter Customer_CustomerRole adapts Customer 
extends CustomerRole { 

/ as in Figure 12 / 
} 
adapter HWProduct_ItemRole adapts HWProduct 

extends ItemRole { 
/ as in Figure 12 / 

} 
adapter_Tax ChargerRole adapts Tax extends ChargerRole { 

/ as in Figure 12 / 

adapter Reg_Pricing_Product extends Pricing_Product { 
adapter Quote _ LineItemRole 

} 

extends Pricing_Product. Quote _ LineItemRole { 
protected PricerRole pricer ( ) { return product ( ) ; } 

adapter HWProduct_PricerRole adapts HWProduct 
extends PricerRole { 

/ as in Figure 12 / 

Figure 14: Extension of abstract pricing composite adapter 

total = 0; 
for (inti = 0; i < elementsOsizeO; i++) 

total = total + elementsO[i].valueO ; 
re tum total; 

\ Composite ~r Element I 
\~==========~IV /' I 

• double sumO I double value() I 
Element[] elemRntsO 

Figure 15: Summing component 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 349 

import product; 
import summing; 

adapter Summing_PricinLProduct adapts Pricing_Product { 
adapter Order_Composite adapts Order extends Composite { 

Elements [ ] elements ( ) { return quotes ( ) ; } 
} 
adapter Quote_Element adapts Quote _ LineltemRole 

extends Element { 
double value () { return price ( ) ; } 
} 

Figure 16: Integration of summing with pricing and product 

Note that a top-level adapts relation has similar dynamic semantics as the 
class-level adapts relation. That is, instances of concrete subadapters of 
Pricing_Product will appear to dynamically acquire class adaptations defined 
in Summing_Pricing_Product. Any composite adapter instance of type 
Pricing_Product that gets lifted to the type Summing_Pricing_Product is enabled 
to (a) view any instance of the base type Order within its scope as being of 
type Order_Composite, i.e., of type Composite with a particular 
implementation of the abstract method elementsO (a feature that is not 
supported by a "pure" Summing_Pricing_Product composite adapter), and (b) 
view any class adapter instance of type Quote_LineltemRole within its scope 
as automatically acquiring the ability to also play the role of a summing 
Element as defined by Quote_Element. 

This results, e.g., in a double type lifting performed on the elements of 
the array returned by the invocation of quotesO within the implementation of 
elementsO in Order_Composite. As defined in the class product.Order, the 
method quotesO returns an array of Quote objects. However, since quotesO is 
being executed within the scope of a composite adapter of type 
Pricing_Product each Quote object q contained in the returned array gets 
automatically lifted to a ql: Quote_LineltemRole. The latter (ql: 

Quote_LineltemRole) gets further lifted to a qe: Quote_Element, since the 
composite adapter within whose scope it is created is not a pure 
Pricing_Product, but rather one that IS lifted to the type 
Summing_Pricing_Product. 

We could have as well used the extends rather than the adapts 
relationship between adapters in order to define Summing_Pricing_Product. 

However, adapts is in this case preferable in order to avoid extending all 
Pricing_Product subadapters. Using the static extends rather than the dynamic 
adapts relation would result in (a) a proliferation of adapters: 
Summing_Reg_Pricing_Product, Summing_Neg_Pricing_Product, Summing_Sale_ 



www.manaraa.com

350 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Pricin9_Product, and (b) duplication of the code in the adaptation body of 
Summin9_Pricin9_Product in Figure 16. 

Using the adapts relation rather than extends allows us to reuse the 
adaptation encoded within the body of Summing_Pricing_Product with 
instances of all sub adapters of Pricing_Product. This is illustrated by the 
sample client code in Figure 17. 

public class Client { 
static public void main ( String [ ] args ) { 

Order 0 = new Order ( ) ; 
Reg]ricing]roduct regpp = new Reg]ricing]roduct ( ) ; 
Sale_Pricing_Product salepp = new Sale]ricing_Product () ; 
Summing_Pricing_Product summpp = new Summing_Pricing_Product () ; 

System. out. printin ( ( 0 liftTo ( regpp liftTo sumpp ) ) . total ( ) ) ; 
System. out. println ( ( 0 liftTo ( salepp liftTo sumpp ) ) . total ( ) ) ; 

Figure 17: Using the Summing_Pricing_Product adapter 

Recall that (b liftTo a) causes the base object b to be lifted to the role 
defined for its class in the composite adapter A. Thus, in Figure 17 we first 
"adapt" the Re9_Pricin9_Product adapter regpp by the Summing_Pricin9_Product 

adapter sumpp. The resulting adapter is then used to lift the Order object, with 
the totalO method invoked on the adapted order object. A similar process 
applies for sales pricing. 

In the discussion so far the base component has been a concrete application. 
Adapters can also be used to glue together two abstract collaborations, as 
illustrated in Fig 18. Now, we first glue together the abstract collaborations 
defined in the summing and pricing packages, resulting in the abstract 
composite collaboration TotaLPricing and then glue the latter with the product 
package by specifying TotaLPricing_Product and its subadapters. 

4. ALTERNATIVE REALIZATIONS OF THE 
ADAPTER CONSTRUCT 

Alternative realizations of the adapter construct can be classified in two 
mam groups: 

Global scope. The modifications specified by the adapter are globally 
visible in the sense that after compiling adapter A { ... adapter R adapts C1.B 

extends C2.S adaptation_body ... } only an in-place modified B is visible with 
the new definition being equivalent to class B extends S { B-def adaptation 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 351 

body}. If only single inheritance is supported and B already uses the sole 
inheritance link, one should think of the resulting definition of B as being 
equivalent to class B {B_defs S_defs adaptation_body}, i.e., S's definition after 
flattening its inheritance chain gets "copied" within B. This is the generative 
case that applies the adapter statically, i.e., at adapter compilation time or 
during class loading. Either source code generators or binary component 
adaptation tools [6, 3] can be used for this purpose. The client's use of the 
integrated functionality is as in the sample code for the pricing example in 
Figure 19. Note the regular- prefix of the priceO method. This is because we 
assume a code generation scheme that uses adapter names to qualify method 
names for avoiding name clashes. 

import pricing; 
import summing; 
import product; 
abstract adapter TotatPricing { 

abstract adapter Pricing_Composite extends Composite { } 
abstract adapter LineItemRole _Element adapts LineItemRole 

extends Element { 
double value ( ) { return price ( ) ; } 

abstract adapter TotatPricing_Product extends TotatPricing { 
adapter Order _Pricing_Composite adapts Order 

} 

} 

extends Pricing_Composite { 
Elements [ ] elements ( ) { return quotes ( ) ; } 

adapter Quote _ LineItemRole _Element adapts Quote 

} 

extends LineItemRole _Element { 
/ as in Pricing Product in Figure 14 / 

adapter HWProduct_ ItemRole adapts HWProduct extends ItemRole { 
/ as in Pricing Product in Figure 14 / 

} ... 

adapter ReLTotat Pricing_Product extends Total_ Pricing_Product { 
/ as in Reg Pricing Product in Fig 14 / 

} 
Figure 18: Integration of summing with pricing and product 

The primary advantage of static, invasive integration is efficiency, as it 
will avoid the need for excessive delegation to the base object. Actually, 
there are no adapter-adaptee pairs and the functor role of the composite 
adapter instances is no longer needed; composite adapters do not exist during 
run-time. The primary disadvantage is loss of flexibility. Enforcing the 
component adaptation to occur at either compile or load time restricts a 



www.manaraa.com

352 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

runtime object from acquiring the services of new components that become 
available after its instantiation. Thus only anticipated collaborations are 
supported. This also contrasts the Java philosophy of loading program 
constructs as they are needed, and not before. Since the base component's 
classes are modified in-place, all class instances are affected. Thus, it is not 
possible to be selective as to which objects acquire the new class semantics. 
Furthermore, objects become very heavy, in that they must support the state 
required for all of the possible collaborations in which they might 
participate. 

public class Client { 
static public void main ( String [ ] args ) { 

Quote q = new Quote () ; 
System. out. println ( q . regular ~rice ( ) ) ; 

} 

Figure 19: Using a globally scoped regular pricing 

Local scope. The adapter introduces a new name space, which means 
that after the composite adapter is compiled both the original B as in the 
component C1 and its role in the collaboration defined by the composite 
adapter, AR will co-exist. Two subcases can be distinguished here: 
1. Transparent scope: Given adapter R adapts B extends S adaptation_body 

defined within the composite adapter A, we have that A.R is substitutable 
for B. This would be e.g., the case if AR is generated as class AR extends 

S { B-defs adaptation-code }. That means, if b is an instance of B and a an 
instance of A, than (b liftTo a) provides the original interface of B plus the 
interface of AR. 

2. Opaque scope: AR is a "view" over B, meaning that for object b we can 
call methods in the original interface of B, while the result of (b liftTo a) 
provides only the interface of AR. 

The composite adapter pattern presented in [16] (the structure of which was 
shown in Section 2) provides (Java) programmers with a language idiom to 
simulate the b.2 version of the adapter construct. A simulation of adapters 
with transparent scope (b.l) requires extended object models supporting 
object-based inheritance [11] as e.g., Self [24] or the Darwin model and its 
Java based realization called Lava presented in [7]. Assuming Lava as the 
underlying language, modifying the technique in [16] to support transparent 
scope essentially means replacing the adaptee relation between role and base 
objects in Figure 6, i.e., forwarding semantics, with a delegatee relation as 
defined in Darwin, i.e., true delegation semantics with late-binding of self. 
The rest of the pattern remains the same. 

Recall though that the pattern presented in [16] is too low-level for the 
average programmer to manage. For experimental purposes, we have 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 353 

developed a more abstract version of the technique presented in [16] that 
makes use of the reflective facilities of the Java 2 platform. Briefly, the 
technique is as follows. The programmer defines all composite adapter 
classes as direct or indirect subclasses of a predefined class 
CompositeAdapter. On the first call of its constructor a CompositeAdapter 

makes use of the reflective API of Java 2 -namely of the new method 
getDeclaredClassesO implemented in java.lang.Class - in order to automatically 
establish the infrastructure of adapter factories (cf. Figure 6) as well the 
infrastructure needed for managing the adapter-adaptee relations. In this way 
the work of the programmer is facilitated, in that he/she (a) does not need to 
implement the AdapterObject interface from Figure 6 for each inner class 
adapter, and (b) does not need to take care of defining and initializing the 
factory objects for each class adapter. However, he/she still needs to 
explicitly call lifting/lowering operations at the appropriate places. Further 
details about this realization are out of the scope of this paper. The interested 
reader can find more information and sample code for the examples in the 
paper in [14]. 

The prototype outlined above allows us to experiment with the adapter 
within the context of a mainstream language such as Java. But it still remains 
complex for an inexperienced programmer. In the long run, a preprocessor 
will be needed to allow the programmer to work with the high-level adapter 
construct presented in this paper, while having the preprocessor statically 
transform adapter bodies to generate the corresponding composite adapter 
class as it would be hand-written by the programmer, if he/she used the 
pattern described in [16). 

5. RELATED WORK 

VanHilst and Notkin propose an approach for modeling collaborations 
based on templates and mixins as an alternative to using frameworks [20). 
However, this approach may result in complex parameterizations and 
scalability problems. Smaragdakis and Batory solve this by elevating the 
concept of a mixin to multiple class granularity, using C++ parameterized 
nested classes [17]. However, their approach does not address the issue of 
dynamic customizations as described by Holland [9]. A Contract [9] allows 
multiple, potentially conflicting component customizations to exist in a 
single application. However, contracts do not allow conflicting 
customizations to be simultaneously active. Thus, it is not possible to allow 
different instances of a class to follow different collaboration schemes. 

Seiter et al. proposed a context relation to link the static and dynamic 
aspects of a class [18). While supporting multiple dynamic collaboration 



www.manaraa.com

354 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

schemes, the approach is based on dynamically altering a class definition for 
the duration of a method invocation, thus affecting all class instances. 
Multiple dynamic variations of an object's behavior are also supported "in the 
Rondo model [13]. However, Rondo does not provide explicit support for 
collaborations. In this paper we propose a model for scoping the different 
collaboration schemes, thus we can be selective as to which objects are 
affected. 

Batory proposed the GenVoca architecture to define parameterized, plug­
compatible, interchangeable and interoperable components [1]. The 
GenVoca model is based on the notion of realm, interface, component and 
layer. Layers represent encapsulations of composite-object decorators, which 
could be dynamically composed. The technique we have presented can be 
used as an elegant Java implementation for GenVoca layers. Einarson and 
Hedin also suggest the use of inner classes as alternative implementations of 
several design patterns [4]. 

Mattson et al. [12] also indicate the problems with framework 
composition, analyze reasons for these problems, and investigate the state of 
the art of available solutions. Bosch argues that language support should be 
provided for explicitly describing design patterns in object-oriented 
programs [2]. Among supporting other patterns, he also provides a language 
construct for specifying a class as the adapter of another class, i.e., for 
explicit expression of the adapter pattern [5]. The adapter construct as 
proposed in [2] has two main restrictions. First, it does not support 
adaptation of entire collaborative functionality. Second, as indicated in [2], it 
does not allow interface incompatibility. 

An underlying theme of the work described in this paper is separation of 
concerns to avoid software tangling. This is also the motivation behind both 
Aspect-Oriented Programming [25] and Hyperspaces (a new model of 
subject-oriented programming) [19]. AspectJ [25] is an extension of Java 
that allows one to program different aspects separately. Mezini and 
Lieberherr proposed Adaptive Plug and Play Components, or AP&PCs, 
which define a slice of behavior for a set of classes, and can be 
parameterized to allow reuse with different class models. An enhanced form 
of AP&PCs that decreases tangling of connectors and aspects in AspectJ is 
described in [10]. This improved form of AP&PC uses similar techniques as 
described in this paper, along with tool support. 

Summary and Future Work. This chapter studied traditional 
framework customization techniques and concluded that they are 
inappropriate for component-based programming since they lack support for 
non-invasive, encapsulated, dynamic customization. We proposed a new 
language construct, called pluggable composite adapter, for expressing 
component gluing explicitly and discussed alternative realizations of the 



www.manaraa.com

COMPONENT INTEGRATION WITH PLUGGABLE COMPOSITE ADAPTERS 355 

construct. The construct allows the separation of customization code from 
application and framework implementations, resulting in better modularity, 
hence, in more flexible extensibility, eaSIer maintenance and 
understandability . 

As described in this paper, the adapter construct is focused only on a 
special kind of integration: additive integration. The adapter-based 
integration allows dynamic, noninvasive extension of a base component with 
additional behavior. In the more general case, the integration has overriding 
rather than additive semantics, i.e., it will cause the modification of existing 
behavior in at least one of the components being integrated. Weaving aspects 
as they are conceived in the aspect-oriented extension of Java, Aspect/J [25], 
has an overriding nature. 

Although overriding semantics are not supported by the version of the 
adapters presented in this paper, there is nothing inherent that would prevent 
an appropriate extension of the adapter construct to serve this need. In fact, 
as preliminary work in that direction shows [10], adapters seem to provide 
an appropriate mean for decreasing tangling between aspect definitions and 
weaving concerns present in AspectlJ, providing for more reusable aspects. 

This research track is one of our very near goals in the future. We are 
also working on a denotational semantics of the pluggable composite adapter 
construct. An investigation of how adapters play together with fundamental 
component technology such as the EJB model, Java's servlets, etc. will be an 
interesting area of future work. Last but not least, we intend to demonstrate 
the usefulness of the pluggable composite adapter construct by 
benchmarking it using real-life applications. 

ACKNOWLEDGEMENTS 

We would like to thank Sonali Kochar, David Lorenz, Doug Orleans, and 
Johan Ovlinger for their feedback on this paper. The second author was 
partially sponsored by the National Science Foundation under grant number 
CDA-972057, and the third author by the Defense Advanced Projects 
Agency (DARPA) and the Rome Laboratory under agreement number 
F3 0602-96-2-0239. 

6, REFERENCES 
1. Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci and Marty Sirkin. 

The Gen Voca Model of Software-System Generators. In IEEE Software, II (5), 1994. 
2. 1. Bosch. Design Patterns as Language Constructs. In Journal of OOP, 1998. 
3. G. Cohen, 1. Chase, and D. Kaminsky. Automatic Program Transformation with JorE. In 

USENIX 1998 Annual Technical Conference, pp. 167-178, 1998. 



www.manaraa.com

356 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

4. D. Einarson and G. Hedin. Using Inner Classes in Design Patterns. Available at 
<http://www.dna.lth.se/home/daniel/patternsinnerclasses.html>. 

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of 
Reusable Obj ect-Oriented Software. Addison-Wesley, 1994. 

6. Holzle and R. Keller. Binary Component Adaptation. In Proceedings of ECOOP '98, 
Springer Verlag LNCS 1445, pp. 307-329, 1998. 

7. G. Kniesei. Type-Safe Delegation for Run-Time Component Adaptation. In Proceedings 
ofECOOP '99, Springer Verlag LNCS 1628, pp. 351-366, 1999. 

8. J. Gil and D. Lorenz. Design Patterns and Language Design. In IEEE Computer, 31(3), 
pp. 118-120, 1998. 

9. I. Holland. The Design and Representation of Object-Oriented Components. Ph.D. 
Dissertation, Northeastern University, Computer Science, 1993. 

10. K. Lieberherr, D. Lorenz, and M. Mezini. Modeling Aspects with Adaptive Plug & Play 
Components. College of Computer Science, Northeastern University, Technical Report 
No. NU-CCS-99-01, Boston, MA, 1999. 

11. H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in 00 
Systems. In Proc. of OOPS LA '86, ACM Sigplan Notices, 21(11), pp. 214-223, 1986. 

12. M. Mattson, J. Bosch and M. Fayad. Framework Integration Problems, Causes, 
Solutions. Communications of ACM, 42(10), pp. 80-87, 1999. 

13. M. Mezini. Variational Object-Oriented Programming Beyond Classes and Inheritance. 
Kluwer Academic Publishers, 1998. 

14. M. Mezini. A Reflective Implementation of Pluggable Composite Adapters. 
http://www.informatik.uni-siegen.de/mira/DynCompGlue.html 

15.M. Mezini and K. Lieberherr. Adaptive Plug and Play Components for Evolutionary 
Software Development. In Proceedings of OOPSLA '98, 33(10), pp. 97-116, 1998. 

16.L. Seiter, M. Mezini, K. Lieberherr. Dynamic Component Gluing in Java. In Proc. of 1st 
Symposium on Generative and Component-Based Software Engineering (GCSE '99), 
Springer Verlag, LNCS, 1999. 

17. Y. Smaragdakis and D. Batory. Implementing Layered Designs with Mixin Layers. In 
Proceedings ofECOOP'98, Springer Verlag LNCS, pp. 550-570,1998. 

18.] L. Seiter, J. Palsberg, and K. Lieberherr. Evolution of Object Behavior using Context 
Relations. In IEEE Transactions on Software Engineering, 24(1), pp. 79-92, 1998. 

19.P. Tarr, H. Ossher, W. Harrison, S. Sutton Jr. N Degrees of Separation: Multi-Dimensional 
Separation of Concerns. In Proceedings ofICSE'99, pp. 107-119, 1999. 

20.M. VanHilst and D. Notkin. Using Role Components to Implement Collaboration-Based 
Designs. In Proceedings ofOOPLSA'96, pp. 359-369, 1996, San Jose. 

21. IBM San Francisco. http://www.software.ibm.com!ad/sanfrancisco/about.html 
22.R. Monson-Haefei. Enterprise Java Beans. O'Reilly & Associates, Inc., 1999. 
23. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison­

Wesley, 1998. 
24.D. Ungar and R. Smith. Self: The Power of Simplicity. In Proceedings of OOPSLA '87, 

ACM Sigplan Notices, 22(12), pp. 227-242,1987. 
25.Xerox PARC AspectJ Team. AspectJ, Xerox PARC Technical Report, January 1999. 

http://www.parc.xerox.com!spl/proj ectsl aopl 



www.manaraa.com

Chapter 12 

ASPECT COMPOSITION USING COMPOSITION 
FILTERS 

Lodewijk Bergmans, Mehmet Ak~it and Bedir Tekinerdogan 
TRESE group, Department of Computer Science, University ofTwente, P.o. Box 217, 7500 AE, 
Enschede, The Netherlands. email: {bergmans.aksU.bedir}@cs.utwente.nl. 
www: http://trese.cs.utwente.nl 

Key words: composition, aspects, multiple views, view partitioning, view extension, view 
refinement, history sensitiveness, synchronization, composition filters 

Abstract: This chapter first discusses a number of software reuse and extension problems 
in current object-oriented languages. For this purpose, a change case for a 
simplified mail system is presented. Each evolution step in the change case 
consists of the addition or refinement of certain aspects to existing classes. 
These examples illustrate that both inheritance and aggregation mechanisms 
cannot adequately express certain aspects of evolving software. This 
deficiency manifests itself in the number of superfluous (method) definitions 
that are required to realize the change case. As a solution to these problems, 
the composition filters model is introduced. We evaluate the effectiveness of 
various language mechanisms in coping with evolving software as in the 
presented change case. 

1. INTRODUCTION 

One of the most important principles in software engineering is the 
separation of concerns principle [7]. This principle states that a given 
problem involves different kinds of concerns, which should be identified and 
separated to cope with complexity and to achieve the required engineering 
quality factors such as adaptability, maintainability, extendibility and 
reusability. Despite a common agreement on the necessity of the application 
of the separation of concerns principle, its application for large and complex 



www.manaraa.com

358 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

applications that involve multiple concerns may become problematic. The 
reason for this is that concerns that are separated at the design level may 
become scattered at the programming code level and be tangled with 
implementations of other concerns within methods [10]. 

Problems in composing various concerns have been described in different 
publications. For example, in [12, 13, 4] the conflicts between the 
implementation of synchronization concerns and inheritance in object­
oriented concurrent programming languages are described. In [3] the 
problems in composing concerns for real-time specifications are discussed. 
In [1, 6] the so-called multiple views composition problems have been 
addressed. In all these cases, a conceptually sound composition cannot be 
adequately expressed in a given language. The term inheritance anomaly 
was coined in [12, 13] to denote a more specific case of composition 
anomaly where the embedding of synchronization code in method 
implementations causes unnecessary redefinitions if the synchronization 
code has to be reused and/or extended through inheritance. In those cases, it 
typically appears that the problems can be patched by overriding in a 
subclass substantial parts of the methods defined by its superclass. This 
conflicts, however, with the intended reuse and causes reduced 
maintainability. 

In section 2 we will illustrate various composition anomalies by using an 
example change scenario of a simple mail system. Using this example, we 
show that the conventional object-oriented composition techniques cannot 
deal with certain concern compositions satisfactorily. In section 3 we will 
introduce the composition filters model, which is an extension to the object­
oriented model. Composition filters offer a better support for reusing and 
extending software with certain concerns, for example that are presented in 
the mail system case. In section 4 we will provide the composition filters 
solution to the composition anomalies that have been addressed in section 2. 
Finally, we will provide our conclusions in section 5. 

2. EXAMPLE: DESIGN OF A MAIL SYSTEM 

Figure 1 shows the class diagram of a simple mail system, which consists 
of classes Originator, Email, MailDelivery and Receiver. Class Email 
represents the electronic messages sent in this system and provides methods 
for defining, delivering and reading mails. For example, methods to write 
and read the attributes originator, receiver, and content of a mail object. The 
methods putRoute(), getRoute(), deliver() and isDelivered() are used by class 
MailDelivery while routing and delivering the messages from originators to 
receivers. The method replyO is used by receiver objects to send a reply 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 359 

message. In this text, Email will be used as the base class that can be 
specialized into various kinds of email objects. 

«Interface» Email «Interface» 

System content: Object User 

route: Route 
approved: Boolean 

I) delivered: Boolean 16 putOriginator(anOriginator: Object) 
getOriginatorO : Object 
putReceiver(aReceiver: Object) I Originator I 

I MailDelivery getReceiverO : Object 
putContent(aContent: Object) 
getContentO: Object 
sendO 

replyO 
approveO I Receiver I 
isapprovedO : Boolean 
putRoute(aRoute : Route) 
getRouteO : Route 
deliverO 
isDeliveredO : Boolean 

Figure 1: The interface methods of class Email 

To illustrate a number of composition anomalies, class Email will be 
extended to support additional concerns. The concerns that we will address 
are the following: 

1. adding multiple views, whereby the access to the mail interface is 
distinguished for a user and system view. 

2. view partitioning, whereby the existing views are partitioned into 
additional sub-views. 

3. view extension, whereby the views are extended. 
4. history sensitive behavior, whereby information on history is logged. 
5. synchronization to multiple classes, whereby locking mechanisms are 

added to multiple classes. 

The motivation for these change cases is to show that it is in many cases 
impossible to define such extensions in the object-oriented model without 
superfluous redefinitions, i.e. composition anomalies. 

Object-orientation provides two different mechanisms for composing 
concerns; either through aggregation or through inheritance (see also chapter 
2, section 2.2.5). For each change case, we will discuss the application of 
both mechanisms. 



www.manaraa.com

360 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

2.1 Adding Multiple Views 

The current implementation of class Email allows any client object to 
access e.g. the contents of a mail. We specialize class Email into 
USViewMail (User/System-View) and restrict access to its methods based on 
the class of the client object (i.e. the object that was the sender of the 
invocation). If the client is of the User type (i.e. an Originator or a 
Receiver), it is allowed to execute the methods putOriginatorO, 
putReceiverO, putContentsO, getContentsO, sendO and replyO. The methods 
approveO,putRouteO and deliverO are used by the clients of the System type 
(i.e. an instance of class MailDelivery). No restrictions are required for the 
other methods. 

We assume that the identity of the client object (the sender of the 
message) can be obtained l . The following two subsections discuss 
aggregation-based and inheritance-based approaches within the conventional 
object-oriented model as supported by programming languages such as Java, 
c++ and Smalltalk. 

In the case of aggregation-based composition, the USViewMail object 
encapsulates an instance of class Email and implements the view checking 
operations userViewO and systemView02 • For each method that requires a 
view constraint to be enforced, additional code must be inserted that 
implements this constraint. Because the methods have already been 
implemented in class Email, invoking the appropriate method in the 
encapsulated Email object reuses this implementation. For example method 
putOriginatorO, which is subject to the 'User' view can be implemented as 
follows in pseudocode: 

USViewMail: :putOriginator(Object anOriginator) 

if self.userView() II returns true if view applies 

then return imp.putOriginator(anOriginator) 

else self.viewError(); 

The class diagram in Figure 2 shows aggregation-based composition of 
multiple views. Notice that in this implementation strategy, all the methods 
have to be declared and implemented by class USViewMail, even those 
methods that do not require any view enforcement. This is because, these 
methods must be accessible through the USViewMail object. 

I Note that in most language implementations this is far from trivial, if not impossible. For 
example in Smalltalk and Java there are -computationally expensive- ways to access the 
identity of the client through the calling stack. 

2 We implement view checking in separate methods for the purpose of reuse. 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 361 

Email imp.method_X(args) 

~ .. L USVI,wM,11 A putOriginatorO 
getOriginatorO 

if self._ViewO putReceiverO 
then imp.method_ Y(args) getReceiverO 

I «no views» method_XO 
1-«views def.» method_ YO<:: 

else self. viewErrorO ~ userViewO +imp putContentO 
,--- systemViewO getContentO 

for methods: l"-, viewErrorO sendO 
putOriginatorO, putReceiverO, replyO 
putContentsO, getContentsO, approveO 
sendO, replyO isapprovedO 

putRouteO 
for methods: 1- getRouteO 
approveO, putRouteO, deliverO 
deliver() isDeliveredO 

Figure 2: Aggregation-based composition of multiple views 

Figure 3 provides the class diagram for the inheritance-based 
composition. View checking is again implemented at the start of each view­
constrained method, reuse is now realized through super calls. Only the 
methods that require views have to be redefined; other methods can be 
inherited from the superc1asses. 

if self._ViewO ,~ then super.method_ Y(args) 
else self. viewErrorO 

USViewMail I 

for methods: ~ '------- «view def.» method_YO {> putOriginatorO, 
userViewO 

putReceiverO, putContentsO, 
;- systemViewO 

getContentsO, sendO, replyO 
viewErrorO 

for methods: I~ 
approveO, putRouteO, deliverO 

Figure 3: Inheritance-based composition of multiple views 

The method putOriginatorO is implemented as follows: 

USViewMail: :putOriginator(Object anOriginator) 

if self.userView() 

then return super.putOriginator(anOriginator) 

else self.viewError(); 

Email 

putOriginatorO 
getOriginatorO 
putReceiverO 
getReceiverO 
putContentO 
getContentO 
sendO 
replyO 
approveO 
isapprovedO 
putRouteO 
getRouteO 
deliverO 
isDeliveredO 



www.manaraa.com

362 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Adopting aggregation-based composition, USViewMail implements 16 
methods. Among these, 9 methods implement view checking and 
forwarding, 5 methods are used for forwarding only, and 2 methods 
implement the views (excluding the viewErrorO method). The inheritance­
based implementation requires 11 methods. Here, 9 methods implement 
view checking and super class calls and 2 methods implement the views. 
Ideally, we should only implement the two view implementation methods 
and a mapping between these methods and the methods to which they apply 
(i.e. can be prefixed). The following table summarizes these numbers: 

Table 1: Evaluation of composition anomalies in USViewMail 

Composition Scheme 

Ideal/Conceptual 
Aggregation 
Inheritance 

2.2 View Partitioning 

# Method (re-)definitions 

2+ 1 view mapping 
16 
11 

Assume that class ORViewMail partitions the User view into Originator 
and Receiver views. Only originator clients are allowed to invoke the 
methods putOriginatorO, putReceiverO, putContentO and sendO. Receiver 
clients are only allowed to invoke the method replyO. For other methods, the 
restrictions (if any) defined by USViewMail apply. 

view applies to: 
putOriginatorO, 
putReceiverO, 
putContentO, 
sendO 

view applies to: 
replyO 

ORViewMaiLA 

originatorViewO 

I 
receiverViewO 

imp.method_X(args) 
. ----I «no views» method_XO 
L--______ ~ «views def.» method_YO 

if self._ ViewO viewErrorO 
then imp. method_ Y(args) 
else self. viewErrorO 

USViewMail 

+imp 
kC~--"'-"'-I userViewO 

systemViewO 
viewErrorO 

Figure 4: Aggregation-based composition of view partitioning 

Again, this specification can be implemented using aggregation or 
inheritance-based composition. In the example, in case of aggregation-based 
composition, the aggregated object is an instance of class USViewMail. The 
implementation is along the same lines as for class USViewMail, as shown in 
Figure 4. This means that all the methods for which the additional 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 363 

constraints defined by originator ViewO and receiver View 0 apply, must be 
redefined to add this new view constraint. All other methods that must 
appear on the interface of class ORViewMail have to be defined and 
redeirected as well. 

In the inheritance-based composition approach, class ORViewMail 
inherits from class USViewMail. This requires redefining all the methods 
that are subject to the newly defined originator ViewO and receiver View 0 . 
All other methods are inherited from class USViewMail. This 
implementation is shown in the following figure: 

view applies to: 
replyO 

view applies to: l":, 
ORViewMaiU 

USViewMail 

putOriginatorO, receiverViewO {> putReceiverO, originatorViewO 
userViewO 

putContentO, «views def.» method_YO 
systemViewO 

sendO untitledO 
viewErrorO 

Figure 5: Inheritance-based composition of view partitioning 

We now summarize the number of method (re-)definitions required for 
the view partitioning. Ideally, we only have to define the two views, and 
specify the methods upon which these apply (rather than embedding the 
view checking inside each method implementation). In the aggregation­
based case, for each reused method that must be visible on the interface (i.e. 
14 methods), a redirecting method must be created. For all of these methods 
upon which the views apply, also the view checking must be embedded in 
these method implementations. In addition, two new methods defining the 
originator and receiver-view must be created. In the inheritance-based case, 
the two new views must be implemented, and all the methods that require 
one of these views (respectively 1 and 4) must be redefined as well. The 
following table shows these numbers: 

Table 2: Evaluation of composition anomalies in ORViewMail 

Composition Scheme 
Ideal/Conceptual 
Aggregation 
Inheritance 

# Method (re-)definitions 
2+ 1 view mapping 
16 (+2 view redirection methods) 
7 

Note that in the aggregation-based approach, the view definitions of 
userView and system View are not directly available for class ORViewMail. 



www.manaraa.com

364 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

2.3 View Extension 

In the next example, we extend the originator View 0 and receiver ViewO 
that are defined in class ORViewMail so that they apply to a group of 
originators and receivers. This may be required, for example, in offices 
where more than one person is responsible for sending and receiving mails. 

GViewMail I 
true if the message is in 

Il 
-

the collection originators: Vector ORViewMail 

<originators> recew ers: Vector 

originat orView() 
- originatorView() 

receiverView() 
true if the message is in the rece Iv erView() 

collection <receivers> 

Figure 6: Inheritance-based composition of view extension 

In inheritance-based composition, the methods originator View 0 and 
receiverViewO of class ORViewMail are overridden in GViewMail to define 
group originator and receiver views, respectively. All other methods can be 
inherited from class ORViewMail. A call to, for example, originatorViewO 
in method ORViewMail::sendO, will then refer to the originatorViewO 
implemented in GViewMail. In this way, only 2 methods are required for re­
implementing the views (we assume that UserViewO and SystemViewO need 
not be re-implemented). Figure shows inheritance-based composition. 

In aggregation-based composition, the implementation of class 
GViewMail is analogous to that of ORViewMail as shown in Figure 6. The 
two methods that implement the views are redefined, the methods that are 
subject to a view must include the checks to these new view methods3, and 
the other reused methods require a simple redirection implementation. 

Table 3: Evaluation of composition anomalies in GviewMaii 

Composition Scheme 
Ideal/Conceptual 
Aggregation 
Inheritance 

# Method (re-)definitions 
2 
16 
2 

The inheritance-based approach behaves in this case ideal: only the new 
view conditions require additional method definitions. In the aggregation­
based approach, in total 16 methods have to be implemented: 5 methods are 

3 This is because in the aggregation-based case we do not have the equivalence of dynamic 
binding through a selfpseudo-variable. 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 365 

used for view checking, 9 methods are used for forwarding messages only, 
and 2 methods implement the views. Table 3 shows these numbers. 

2.4 History Sensitive Behavior 

Assume that we want to introduce the following refinement: a class 
HistoryMail, which adds a view that does not depend on the client object, 
but upon historical information about the invocations on class HistoryMail. 
If the same method is invoked twice or more in a row for the same mail 
object, a warning (error) message must be generated, and the method is not 
executed. Assume that this constraint applies to the methods sendO, replyO, 
and deliverO. 

verify that the method 
specified by the argument 
is not invoked for the 2nd 
time in consecution 

for sendO, replyO & deliverO 
- do history bookkeeping 
- apply view constraint 

- do history bookkeeping 
- reuse the original 

implementation 

HistoryMaiU 

invocationCounters 

singleO 
registerlnvocationO 
repetitionWarningO 
«view def.» method_XO 
«no view» method_YO 

Figure 7: Inheritance-based composition of history sensitive behavior. 

Figure 7 shows inheritance-based composition of the new history­
sensitive behavior with class GViewMail. The realization of this behavior 
involves two conceptually different problems: the first is to collect the 
relevant history information. This requires bookkeeping of all the method 
invocations, including those that have no constraint defined upon them. In 
other words, bookkeeping of invocations is an aspect that applies to all the 
methods of an object and affects seemingly unrelated parts of the class. The 
bookkeeping requires redefinition of all the reused methods, for example as 
illustrated by the following pseudo-code for the inheritance-based strategy: 

HistoryMail: :methodY«args» II only add bookkeeping 
self.registerlnvocation('methodY') ; 
return super.methodY«args»; 

The second issue is to enforce the constraint upon the three selected 
methods. This requires -a different- redefinition of all the (three) methods 



www.manaraa.com

366 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

that are subject to the history-sensitive behavior, for instance as shown in the 
following pseudo-code example: 

HistoryMail: :methodX«args» 
II history-sensitive; add bookkeeping snd verify view 
self.registerlnvocation('methodX') ; 
if self.single('methodX') 
then return super.methodX«args» 
else self. repetitionWarning () ; 

The aggregation-based solution is almost identical; all the method 
implementations are as shown above, except that in each place where 
"super.methodXO" is written in the inheritance-based case, the aggregation­
based case will have "imp.methodXO" instead. Both cases require 3 new 
methods (singleO, registerlnvocationO and repetitionWarningO) and a total 
of 14 methods to be redefined (that excludes all view and bookkeeping 
methods defined by the reused classes). 

Extension with history-sensitive behavior introduces two new aspects to 
the class: 
- History bookkeeping aspect: this aspect crosscuts all the methods of the 

class: it requires the addition of (a call to) bookkeeping code to all the 
methods. Thus one can image a composition scheme (and language 
model) that requires only the definition of the bookkeeping (as in the 
method registerlnvocationO ) and a specification that states that this 
definition applies to all methods of the class, including the inherited 
methods and -most likely- the methods that will be introduced in 
subclasses. 

- Constraint behavior aspect: for the three methods sendO, reply 0 , and 
deliverO, the constraints have to be specified (i.e. they are not executed 
twice in a row, and then an error is generated). Ideally we would like to 
specify this constraint only once and then simply assign it to the three 
methods. 

The following table shows the number of definitions the above solutions 
require. Since all the solutions require the history bookkeeping implemented 
by all methods, the number of methods that are redefined are the same in all 
solutions. 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 

Table 4: Evaluation of composition anomalies in HistoryMail 

Composition Scheme 
Ideal/Conceptual 
Aggregation 
Inheritance 

# Method (re-)definitions 
2 + 2 mappings 
3 new + 14 redef. 
3 new + 14 redef. 

2.5 Adding Synchronization to Multiple Classes 

367 

Our final example deals with the extension of the mail example with a 
code necessary to synchronize concurrent threads. It is different from the 
previous extensions in that we want to extend multiple classes: HistoryMail, 
MailDelivery, and Receiver. However, all of these classes need to be 
extended with the same logical feature: the ability to lock all operations such 
that they are halted until an unlock operation has been called. We introduce 
class SyncMailSystem, from which we want to reuse the synchronization 
specification and 2 additional operations called lock and unlock. If the 
method lock is invoked, then all subsequent messages are delayed until the 
invocation of the method unlock. 

To illustrate a possible implementation we use semaphores, one of the 
simplest mechanisms to delay and activate threads4 • A first question is how 
to extend the three classes: the approach taken so far in this chapter is to 
create specialized classes. In this case this means the introduction of three 
new classes, namely SyncMail, SyncMailDelivery and SyncReceiver. 
Because these three classes require similar extensions, we focus on one 
class, i.e. SyncMail: the same changes have to be repeated for the other two 
classes. 

SyncMail must reuse behavior from both HistoryMail and 
SyncMailSystem. With inheritance, this requires support for multiple 
inheritance, 'multiple aggregation' is equivalent to repeated aggregation and 
requires no special language support. Because all the (reused) methods of 
SyncMail are affected, aggregation-based and inheritance-based composition 
are further largely identical: each method that is visible on the interface must 
be extended to start with some code that verifies the locking state and acts 
accordingly, for example: 

SyncMail: :methodX() II any method of SyncMail 

if impSyncMS.isLocked() then impSyncMS.wait(); 

return impHM.methodX(); 

II call original method from instance of HistoryMail 

4 For the sake of simplicity, we will ignore possible concurrency conflicts: this could also be 
integrated with the locking code, but we assume they are handled by separate mechanisms. 



www.manaraa.com

368 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

This implementation calls the method isLockedO upon an instance of 
class SyncMailSystem (i.e. impSyncMS) to request the locking state. If the 
state is 'locked', the thread will be blocked by calling waitO, otherwise the 
original method is executed by an instance of class HistoryMail. 

The implementation of SyncMail as illustrated in the previous section 
requires in total 16 method definitions. Here, 14 methods are overridden to 
add synchronization constraints, 2 methods are required to forward the lockO 
and unlockO operations. In the case of multiple inheritance, forwarding 
methods is not needed, which reduces the number of methods to be defined 
with 2. 

Table 5: Evaluation of composition anomalies when adding synchronization. 

Composition Scheme 
Ideal/Conceptual 
Aggregation (multiple) 
Inheritance (multiple) 

# Method (re-)definitions 
4 new + 1 mapping 
4 new + 24 redef. + 6 forw. = 34 
4 new + 24 redef. = 28 

In addition, this must be repeated for classes SyncMailDelivery and 
SyncReceiver, if these have each 5 methods on their interface, the total 
number of defined methods is 14+2 + (5+2) + (5+2) + 4 = 34. The final 
number 4 refers to the number of new methods defined by class 
SyncMailSystem. Table 5 shows the number of definitions that are required 
for the various solutions. 

All the previous evolution steps have illustrated the need to apply certain 
behavior repeatedly within other methods of the same class. This repetition 
characteristic is also referred to as crosscutting [10]. One of the distinctions 
in this case is that, in addition, behavior needs to be repeated within other 
classes. In other words, the synchronization crosscuts methods in multiple 
classes. 

2.6 Overall Evaluation of Change Cases 

The following table provides an overview of the number of method 
definitions for each of the classes and each of the two reuse strategies (i.e. 
aggregation respectively inheritance). The first column gives (an estimation 
of) the number of definitions that are at least needed to realize the concern 
that is to be introduced by each of the classes; i.e. in the ideal case. If the 
same behavior is to be applied to multiple methods, this may be expressed 
by defining a simple mapping between the definition of that behavior and the 
methods; we separately add the number of such mappings. 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 369 

Table 6: An overview of the Mail change case and resulting anomalies 

Extension (class) Ideal Aggregation Inheritance 
#defs #defs #anom #defs #anom 

Email 14 14 0 14 0 
USViewMail 2+1 16 14-1 11 9-1 
ORViewMail 2+1 18 16-1 7 5-1 
GviewMail 2 16 14 2 0 
HistoryMail 2+2 17 15-2 17 15-2 
S~ncMail 4+1 34 30-1 28 24-1 
Totals 26+5 115 89-5 79 53-5 

31 115 84 79 48 

The table shows the number of definitions ('#defs') and 'the number of 
anomalies' ('#anom') for each of the strategies. The number of anomalies is 
equal to the number of superfluous definitions, as calculated by subtracting 
the number of definitions required in the ideal case from the actual number 
of definitions required. 

We can conclude that from the perspective of reusability, the 
conventional object-oriented model -at least in the given example case­
performs unsatisfactorily. The examples show that reusing components 
through aggregation and inheritance mechanisms may not always be 
successful, if objects implement concerns like multiple views, history 
information and synchronization. An important characteristic of the 
presented problems is that they involve crosscutting behavior. 

The aggregation-based change case requires 84 superfluous (re-) 
definitions. Inheritance-based reuse performs better ('only' 48 superfluous 
definitions), but cannot implement dynamically changing reuse relations. 

Despite of all these composability problems, the object-oriented model 
has many useful features. For example, the change case we presented shows 
that each of the versions of the mail system can be adequately realized; it is 
the evolution between versions that cannot be dealt with satisfactorily. For 
this and other -more practical- reasons, we believe that to cope with the 
evolution problems, we should enhance current object-oriented languages, 
rather than replacing them. 



www.manaraa.com

370 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

3. THE COMPOSITION FILTERS MODEL 

3.1 Basic Structure of Composition Filters Objects 

The composition filters (CF) model is a modular extension to the 
'conventional' object model as adopted e.g. by Java, C++ and Smalltalk. The 
behavior of an object can be substantially affected and enhanced through the 
manipulation of incoming and outgoing messages only. To do so, in the CF 
model, a layer called the interface part is introduced. The resulting model 
and its components are shown in Figure 8. 
The most significant components in the CF model are the input filters and 
output filters. Each individual filter specifies a particular manipulation of 
messages. Various filter types are available for different types of 
manipulations. The filters together compose the behavior of the object, 
possibly in terms of other objects. These other objects can be either internal 
objects or external objects. Internal objects are encapsulated within the 
composition filter object whereas external objects remain outside the 
composition filters object, such as globals or shared objects. The behavior of 
the object is a composition of the behavior of its internal and external 
objects. 

interface part , , , 

I 
I 

I 

'inner' part 

received 
messages 

f------+--I input filters 

f------+----j output filters 

sent messages 

Figure 8: The components of the composition-filters model 

In addition, -part of- the behavior of the object can be implemented by 
the 'inner' object, which is therefore also referred to as the implementation 
part. Any conventional object-oriented programming language, such as Java, 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 371 

c++ or Smalltalk5 can implement the inner object: the interface part is a 
modular extension to the inner object. 

3.2 The Principle of Message Filtering 

We will explain the basic mechanism of message filtering with the aid of 
Figure 9. The discussion focuses on input filters, but output filters work in 
exactly the same manner. The main difference is that output filters deal with 
messages sent by the object instead of received messages. 

filter type 
I 

(arriving messagesk 

~ 
mr~) 

" ,-

" 

" filter pattern 

(message matches) 

(message is modified, 
continues to next filter) 

(message matches) 

(message is dispatched) 

Figure 9: An intuitive schema of message filtering. 

To understand the schema the following should be kept in mind: filters 
are defined in an ordered set. A message that is received by an object is first 
reified, i.e. a first-class representation of the message is created6 • The reified 
message has to pass the filters in the set, until it is discarded or can be 
dispatched. Dispatching means that the message is activated again, for 
example to start the execution of a method body, or to be delegated to 
another object. Each filter can either accept or reject a message. The 
semantics associated with acceptance and rejection depend on the type of the 
filter. 

5 Implementations of composition filters have been built as extensions for each of these 
languages in the past [9, II, 14]. 

6 Composition filters thus apply a form of message reflection [8]. 



www.manaraa.com

372 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

Figure 9 visualizes the processing of messages by three filters, A, 8 and 
C. An object can receive a variety of messages, in the figure exemplified by 
mO, nO, 00 and pO. All received messages are subject to manipulation by all 
successive filters. Each filter tries to match messages based on a specific 
pattern. All filters for defining these patterns use a common syntax. The 
matching process can be defined in terms of message properties, but may 
also depend on the current state oftne object. 

We follow the message mO as it passes through the filters. In Figure 9, 
message mO does not match with the pattern defined by filter (A). Thus, this 
filter rejects the message. In this example, the rejected message is simply 
passed on to the next filter. 

The message will then be evaluated by filter (8). The pattern that is 
defined by this filter matches with the message. This is referred to as 
acceptance of the message by the filter. This initiates a particular action that 
depends on the filter type: the message may be manipulated and modified, 
other side effects might take place as well. In the example of filter (8), the 
message is modified (designated in the figure by its changed shape and 
color), and then passed on to the next filter. 

For the last filter in the example, filter (C), the pattern also matches the 
message. The acceptance of the message in this case causes the message to 
be dispatched, for example to a local method of the object. The message 
itself contains information that determines how it should be dispatched (i.e. 
the target object and the message selector). 

In general, every filter set should contain a filter that causes messages to 
be dispatched, as this is the only means to trigger the execution of a method. 
For output filters, dispatching means that the message is submitted to the 
target object. Note that also in this case, upon the reception of this message 
by the target object, the message must first pass the input filters of the target 
object. 

3.3 Filter Specifications 

In this section, we briefly introduce the syntax and intuitive semantics of 
filter specifications. A single filter specification consists of the following 
elements: 

<name>: <filter-type>= {<filter-elem>, <filter-elem>, ... }; 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 373 

This can be interpreted as the declaration of a filter instance of <filter-type> 
with the name <filter-name>, which is initialized with an expression that 
contains a number of filter elements that are separated by comma's 7 • 

Filter elements take the following forms: 
<condition> => [<match-target>.<match-sel>]<target>.<sel> 

In this element, the condition can be seen as a guard that enables the rest of 
the element. The default condition is the True condition, which always 
enables the element. On the right hand side, matching (between the square 
brackets) and substitution (the rightmost pair) with the target and/or the 
selector of a message takes place. The 'implication' operator '=>' has a 
counterpart, expressed as '->', which means that if the condition is satisfied 
and the message does match on the right -hand side, the filter element will 
reject the message. 

As a simple example, consider the following filter expression that defines 
extension of class Mail, by inheriting from Mail and adding a number of new 
methods (the first filter element is redundant, for illustrative purposes only): 

inh:Dispatch={True=>[outer.mjinner.m, inner.*, superObj.*}; 

The first element is always enabled by the condition True, then continues to 
select only the messages with selector m that have been sent to the interface 
of this object Cauter} If this matches, the target of the message is replaced 
with inner and the message selector with m (which is redundant since this 
was already the case). The second element has no explicit condition, in 
which case the default condition True is assumed. As a result it will match 
with any message that is defined by (i.e. is in the signature of) inner, and in 
that case substitute inner as the target of the message. The third element has 
again the default condition True, and will thus match with any message in 
the signature of -the class of- superObj, and in that case substitute superObj 
as the target of the message. 

If the message matches any of the filter elements, the resulting (modified) 
message will be dispatched, i.e. the method defined by the selector of the 
message is to be executed upon the object defined by the target of the 
message. If the target is inner, this causes direct method execution. But if the 
target is another composition filters object, the message is delegated to that 
object, and will start by evaluating the filters of that object. 

7 Actually, the comma's represent just one particular composition operator (best described as 
a conditional OR). Other operators have been discussed previously and may be defined and 
implemented in the future. 

8 Actually, both the left- and the right-hand side of the '=>' can consist of a set of the 
respective elements. 



www.manaraa.com

374 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

3.4 The Superimposition Mechanism 

In this section we briefly introduce the superimposition mechanism of the 
composition filters model. This is an extension to the model that we have 
presented so far: Figure 10 shows a refined version of Figure 8 with a few 
new elements. In the place of the set of input filters in Figure 8, now a box 
with a number of instantiations of filters is shown: these sets of filters are 
defined elsewhere (in the same or other objects). This is exemplified by the 
gray filter definitions in the figure . 

input 
filters 

output 
filters 

.---+---, /' /' filter instantiations 

filter definitions 

Figure 10: Superimposition mechanism in the composition filters model. 

The most important part is the superimposition construct: this is a part of 
a class definition that maps the filtersets (from this object or others) onto a 
set of instances (possibly including instances of the current class). This 
means that the filterset is added (on top of) the existing filterset(s). The 
superimposition construct can also be applied to superimpose other elements 
of the interface part, such as internals, externals and conditions. For more 
details on the superimposition mechanism we refer to [5]. 

3.5 Summary of CF Principles 

The composition-filters approach aims to enhance the expression power and 
maintainability of objects. Filters are based on the following principles: 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 375 

1. There are a number of pre-defined filter classes, each responsible for 
expressing a certain aspect. Programmers may introduce new filters, 
provided these fulfil a number of requirements. 

2. Instances of a filter class can be created and attached to a class defined in 
various languages such as Java [14], Smalltalk [11] and C++ [9]. This 
may occur and change dynamically (at run-time). However, dynamic 
changes may degrate understandability, correctness and implementation 
optimizations and therefore must be realized with care. 

3. A filter instance is initialized using a filter expression. A standard filter 
expression syntax and semantics are available for all filters. This is a 
declarative specification, in the sense that it does not make any 
assumptions about how the specification is to be implemented9• 

4. A message manipulation operation by a filter may change the explicit and 
implicit attributes of the received message. The explicit attributes are the 
receiver object, the message selector and the arguments of the message. 
The implicit attributes include the sender and server object of the 
message, and other attributes that can be introduced by filters or 
application programmers. 

5. A filter specification refers to the parameters of the received messages 
only. It does not make any assumption about other filters. However, a 
filter may refer to the state of its object, as made accessible and 
abstracted through the conditions of the object. 

6. A filter expression consists of a set of filter elements. These elements 
and/or filters themselves can be composed using logical operators such as 
conditional-oR, conditional-AND, and exclusion. In the composition 
filters syntax, the character "," implements a conditional-OR operation, 
which means that if the expression on the left-hand-side cannot match, 
then the expression on the right-hand-side will be evaluated. A 
conditional-AND operation can be implemented by cascading filters, 
using the ";" sign in the filter definition language. 

7. Each filter expression specifies a single concern, which is then mapped 
upon one or more messages that are executed by a method of some object 
(in particular the object itself). This implements the specification of 
crosscutting concerns, although with a scope that is restricted to the local 
object and the objects that is explicitly delegated to. 

8. Superimposition of filters upon groups of objects can be used to express 
concerns that crosscut multiple classes. Superimposition does not break 
the encapsulation of objects, but only relies on public interfaces. 

9 A filter and its parts can be implemented in various ways, for example, as run-time objects 
by adopting message reflection (e.g. in [11]), or as in-lined code, by adopting compilation 
and optimisation techniques (e.g. in [14]). 



www.manaraa.com

376 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

9. Typing is based on signatures that are derived for each object from its 
filter specification. For type checking purposes, the filter interface 
definition language may require additional type declarations, e.g. of 
objects that are reused. 

4. COMPOSITION FILTERS APPROACH TO THE 
MAIL PROBLEM 

4.1 Multiple Views 

The composition filters version of class USViewMail has two attached 
(input) filters. The filter USView, which is an instance of an Error filter, 
expresses multiple views. If an Error filter accepts the received message, 
then it is forwarded to the following filter. Otherwise an exception is 
generated. The filter execute is an instance of a Dispatch filter. If a Dispatch 
filter accepts the received message, then the message is executed. The 
interface (filter) definition of this class can be written as follows: 

inputfilters 

USView : Error 
UserView => {putOriginator, putReceiver, 

putContent, getContent, send, reply}, 

SystemView => {approve, putRoute, deliver}, 
True => {getOriginator, getReceiver, 

isApproved, getRoute, isDelivered} }; 
execute: Dispatch = { inner.*, mail.* }; 

The conditions UserView and System View are Boolean methods defined 
by class USViewMail. If UserView is true, then the Error filter accepts the 
messages putOriginator, putReceiver, putContent, getContent, send and 
reply. Similarly, the messages approve, putRoute and deliver are only 
accepted if System View returns true. The remaining 5 methods are not 
restricted by the Error filter, because the condition is specified as true. 

The specifications "inner. *" and "mail. *" in the Dispatch filter mean that 
the filter accepts all (cf. wildcards) the methods declared by class 
USViewMail and the class of the internal mail object: Email. The pseudo­
variable inner refers to the inner part of the current instance of USViewMail. 

Since filters are separated and largely independent from the class, they 
can be reused separately. For example, software engineers can implement 
the core functionality of the classes mentioned above in any object-oriented 
language without attaching filters. Filters can later be stacked and attached to 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 377 

any of these classes, whenever necessary. Note that the composition-filters 
implementation of USViewMail requires only 3 new definitions: 2 view 
implementations (the conditions) and I composition-filters specification 
(USView) to solve the view problem 10. 

4.2 View Partitioning 

The following filter definitions are required to realize class ORViewMail 
using composition filters: 

ORView:Error = 

origView => {putOriginator, putReceiver, putContent, 
get Content , send}, 

recView => reply, 
true -> {putOriginator, putReceiver, putContent, 

getContent, send, reply} } 
execute: Dispatch = { inner.*, mail.* }; 

If the condition origView is true, the Originator view is valid and the 
messages putOriginator, putReceiver, putContent, getContent and send are 
accepted. These messages will then be dispatched to object mail, an instance 
of class USViewMail. If USViewMail is also extended with filters, the 
accepted message will pass through the filters of USViewMail object as well. 
The condition rec View is used to enforce the receiver view; if this condition 
is true, the reply messages are accepted by the filter. The operator "~>" in 
the last part of this filter means that if the condition is true (which is always 
the case in this example), all messages are accepted except the specified 
ones. The effect of this is that all these other messages will always pass the 
filter, regardless of the actual view that applies. The composition-filters 
implementation of ORViewMail requires only 3 new definitions. These are 
the implementation of 2 views by conditions and the ORView filter 
specification. 

4.3 View Extension 

The composition-filters implementation of class GViewMail does not 
require any specific filter definition. Since conditions are methods, they can 
be reused from class ORViewMail or overridden if necessary. In GViewMail, 
these conditions can be redefined to check for groups of originators and 
receivers. 

to We do not count the Dispatch filter because it is only used to express inheritance, 
something that we did not count as a separate definition in the examples of the 
conventional object model either. 



www.manaraa.com

378 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

4.4 History Sensitive Behavior 

Consider the following definition of filters for class HistoryMail : 
check: Meta = { [*linner.verify } 
bookkeeping: Meta = { [*linner.count }; 
execute: Dispatch = { True=>{inner.*, mail.*} }; 

The Meta filter is used to reify a message. If the received message 
matches -in this specification it always matches because of the wildcard 
n[*]n_, it is reified. The resulting object is sent as the argument of a newly 
created message, with a target and selector as specified by the second part of 
the filter element. 

In this case, the first Meta filter sends the reified message to the inner 
object, executing the method verify, which verifies repeated execution and 
generates a warning whenever appropriate. The second Meta filter sends the 
reified messages to the inner bookkeeping method, which performs the actual 
bookkeeping of the last executed message. 

More detailed information about Meta-filters can be found in [2]. The 
composition-filters implementation of HistoryMail requires 4 new 
definitions: two filter specifications, and the methods count and verify. 

4.5 Adding Synchronization to Multiple Classes 

The problem of adding synchronization can be split in two issues: the 
first is how to specify synchronization, the second is how to attach this 
crosscutting specification to the three classes involved (HistoryMail, 
MaiiDelivery, and Receiver). 

U sing composition filters, we can express synchronization by a filter of 
type Wait; filters of this type perform synchronization of messages by 
queuing all messages as long as they cannot match with any of the filter 
elements. Locking can be expressed with the following filter definition: 

queue: Wait = { True=>unlock, Unlocked =>* }; 

The message unlockO will always match at the first element, and is thus 
never blocked. If the condition Unlocked is true, then any message matches 
and will proceed to the next filter, otherwise all messages -except unlockO­
will be queued until the condition Unlocked does become true. 

Instead of creating three new subclasses, we can create a single class 
SyncMail, which contains all the new definitions and a superimposition 
specification to attach the necessary synchronization specifications to classes 
HistoryMail, MailDelivery and Receiver as well. The following specification 
shows how to superimposes the filterset locking (which contains the queue 



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 379 

filter of type Wait that we showed above) upon all the instances of classes 
HistoryMail, MailDelivery and Receiver: 

superimposition 

selectors 

lockables={*=HistoryMail, *=MailDelivery, *=Receiver}; 
filtersets 

lockables <- locking; 

Superimposition specifications consists of two distinct parts: first one or 
more selectors are declared; each selector expression defines a set of 
instances. The second part uses the selector identifiers to superimpose 
filtersets (or internals, externals, conditions or methods) upon a certain set of 
instances as designated by the selectors. 

This composition-filters implementation requires 6 new definitions. 
These are the filterset locking (with only a Wait filter specification), the 
condition unlocked, the two methods lockO and unlockO, the definition of 
the selector lockables and the superimposition of the filterset locking. In the 
case of an ideal or minimum number of definitions, the selector and 
superimposition could be merged ll . 

4.6 Evaluation 

In order to compare the composition filters approach with the 
conventional object model, we have counted the number of (method, filter or 
condition) specifications in each of the different change cases. They are 
shown in Table 7, together with the results from Table 6 that show the 
results for inheritance and aggregation. 

Table 7: The Mail change cases and resulting anomalies including composition filters 

Extension (class) Ideal Aggregation Inheri tance Com2os.filters 
#defs #defs #anom #defs #anom #defs #anom 

Email 14 14 0 14 0 14 0 
USViewMaii 3 16 13 11 8 3 0 
ORViewMaii 3 18 15 7 4 3 0 
GvicwMaii 2 16 14 2 0 2 0 
HistoryMail 4 17 13 17 13 4 0 
S~ncMaii 5 34 29 28 23 6 
Total definitions 30 115 84 79 48 32 1 

This table is different from Table 6 only in the last two columns, where 
the results for composition filters are shown. It appears that the composition 
filters implementations are 'ideal' in the sense of the amount of redefinitions 

11 But note that this separation is made for reasons of modularity and adaptability. 



www.manaraa.com

380 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

that are required to implement these change cases. In short, this is due to the 
appropriate granularity and modularity that composition filters allow. The 
next section discusses the contributing factors in more detail. 

5. CONCLUSION 

In this chapter we have illustrated the limitations of the two most widely 
used forms of object composition in object-oriented design and 
programming: inheritance and aggregation. The change case of the mail 
system illustrates some of the problems in the evolution of object-oriented 
software. Each change case consists of the addition or refinement of a single 
aspect -or concern- to existing classes. 

We have assumed the following requirements for dealing with evolving 
software: 
- Modularity: the newly introduced aspect must be modeled as a separate 

entity of development and reuse. 
- No modifications to the existing classes are allowed (this is partly implied 

by the previous item). 
- Avoid code replication, because of the maintenance problems this brings 

(it also requires extra work). 

The change case of the Mail example has introduced the following features 
(generalizations of these problems have been added between brackets): 
- adding multiple views (i.e. dynamically adding constraints to groups of 

methods) 
- view partitioning (or in general, state partitioning) 
- view extension (i.e. condition refinement) 
- history sensitive behavior (administering executions plus state dependent 

constraints) 
- adding synchronization (adding special execution semantics to groups of 

methods in multiple classes) 

Through these examples, we have illustrated that both inheritance and 
aggregation cannot adequately express certain cases of evolving software. 
This is apparent by looking at the number of definitions that were required: 
for inheritance 79, and for aggregation 115. In these cases 48 respectively 84 
definitions were unnecessary from an 'ideal', i.e. conceptual point of view. 
These superfluous definitions are a serious maintenance problem. 

In section 3 we briefly introduced the composition filters model: a 
modular extension to the object-oriented model that allows for composing 
new classes from (a) the visible behavior of existing classes and (b) well-



www.manaraa.com

ASPECT COMPOSITION USING COMPOSITION FILTERS 381 

defined semantic actions. The latter semantic actions are defined by the 
various available filter types, and may for example express synchronization, 
exceptions, message reification and message dispatch. 

We have shown in section 4 how the composition filters model can be 
used to support software evolution as illustrated by the Mail system change 
case. For the given example, almost no superfluous definitions were required 
to implement it. The following characteristics of the composition-filters 
model contribute most to this result. 
- The composition mechanism of composition filters merges most of the 

benefits of both the aggregation-based approach and the inheritance-based 
approach. 

- Composition filters provide abstractions (conditions) for expressing states 
(which can also be used to express views or constraints). 

- Composition filters provide abstractions for mapping these states plus a 
certain behavior to one or more elements in the interface (signature) of an 
object. This realizes an important form of crosscutting of behavior over 
methods. 

- Using the Meta filter, meta-level state such as history information can be 
obtained and managed in a straightforward way. 

- The superimposition construct allows to specify a certain behavior (e.g. as 
a filter) in one place, and apply that behavior to multiple locations 
(classes). This expresses crosscutting across multiple classes. 

One may wonder whether the example in this chapter suits the abilities of the 
composition filters model particularly well. Although there is an obvious 
match, the examples can be easily generalized (as described earlier in this 
section) to a very wide range of problems. The important benefits of the 
model lie in the composition mechanism, which is applicable to arbitrary 
domains. 

ACKNOWLEDGEMENTS 

This research has been supported and funded by various organizations 
including Siemens-Nixdorf Software Center, the Dutch Ministry of 
Economical affairs under the SENTER program, the Dutch Organization for 
Scientific Research (NWO, 'Inconsistency management in the requirements 
analysis phase' project), the AMIDST project, and by the 1ST Project 1999-
14191 EASYCOMP. 



www.manaraa.com

382 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

6. REFERENCES 

1. M. Ak~it, L. Bergmans & S. Vural, An Object-Oriented Language-Database Integration 
Model: The Composition-Filters Approach, ECOOP '92 Conference Proceedings, LNCS 
615, Springer-Verlag, 1992, pp. 372-395. 

2. M. Ak~it, K. Wakita, J. Bosch, L. Bergmans and A. Yonezawa, Abstracting Object­
Interactions Using Composition-Filters, In: Object-based distributed processing, R. 
Guerraoui, O. Nierstrasz & M. Riveill (eds), LNCS, Springer-Verlag, 1993, pp 152-184. 

3. M. Ak~it, J. Bosch, W. van der Sterren, L. Bergmans, Real-Time Specification 
Inheritance Anomalies and Real-Time Filters, ECOOP'94 Conference Proceedings, 
LNCS 821, Springer-Verlag, 1994, pp. 386-407. 

4. L. Bergmans. Composing Concurrent Objects, Ph.D. thesis, University of Twente, The 
Netherlands, 1994 

5. L. Bergmans and M. M. Ak~it, Composing Crosscutting Concerns using Composition 
Filters, Communications of the ACM, Vol. 44, No. 10, (to appear) October 2001 

6. S. de Bruijn, Composable Objects with Multiple Views and Layering, MSc. thesis, Dept. 
of Computer Science, University of Twente, March 1998 

7. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976. 
8. J. Ferber, Computational Reflection in Class-Based Object-Oriented Languages, 

OOPSLA '89, ACM SIGPLAN Notices, Vol. 24, No.1 0, October 1989, pp. 317-326 
9. M. Glandrup, Extending C++ using the concepts of Composition Filters, MSc. thesis, 

Dept. of Computer Science, University of Twente, November 1995 
10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin, 

Aspect-Oriented Programming. In proceedings of ECOOP '97, Springer-Verlag LNCS 
1241, June 1997. 

11. P. Koopmans, On the design and realization of the Sina compiler, MSc. thesis, Dept. of 
Computer Science, University of Twente, August 1995 

12. S. Matsuoka, K. Wakita & A. Yonezawa, Synchronization Constraints with Inheritance: 
What is Not Possible- So What is?, Tokyo University, Internal Report, 1990 

13. S. Matsuoka & A. Yonezawa, Inheritance Anomaly in Object-Oriented Concurrent 
Programming Languages, in Research Directions in Concurrent Object-Oriented 
Programming, (eds.) Agha, Wegner & Yonezawa, MIT Press, April 1993, pp. 107-150 

14. C. Wichman, ComposeJ: The Development of a Preprocessor to Facilitate Composition 
Filters in the Java Language, MSc. thesis, Dept. of Computer Science, University of 
Twente, December 1999. 



www.manaraa.com

INDEX 

1t-calculus, 263, 287 
1tL-calculus, 287 
Adaptive plug & play components, 335 
Adaptive programming, 319 
Agents, 261, 263, 275 
Anonymous abstraction, 271 
Application family engineering, 110 
Application generators, 41 
Application system engineering, 111 
AspectJ, 288, 354 
Aspect-oriented programming, 209,215,288, 

319,354 
Business performance, 100 
C++, 288 
Channels, 263 
CLOS, 284 
CML,287 
Common Lisp, 284 
Component composition 

aggregation-based composition, 360 
inheritance-based composition, 361 

Component system engineering, 110 
Components, 34, 66, 74, 101, 104, 130, 161, 

220,261 
component algebras, 268 
component architectures, 261 
component integration, 325 
composition problems, 329 
dynamic component adaptation, 337 
dynamic component gluing, 343 

framework customization, 325 
glues, 336 
models, 261 
requirements, 327 
type lifting, 339 
type lowering, 342 

Composition Filters model, 370 
solving the history sensitive behavior 

problem, 378 
solving the multiple views problem, 376 
solving the view extension problem, 377 
solving the view partitioning problem, 

377 
Composition style, 281 
Concurrency and synchronization, 43, 154, 

184,189 
Connectors, 262 
Constraint systems, 45 
Context, 277 
Control systems, 46 
Coordination abstractions, 262 
Delegation, 38 
Distributed Asynchronous Collections, 176, 

183 
Distribution, 48, 154, 176, 183 
Domain analysis, 102. See Software 

architecture:domain analysis 
Domains 

application domain, 32 
computer science domain, 32, 41 



www.manaraa.com

384 SOFTWARE ARCHITECTURES AND COMPONENT TECHNOLOGY 

domain-driven architecture design, 17 
mathematical domain, 32 
obstacles in computer science domain, 33 

Dynamic Context, 278 
Encapsulation and multiple interfaces, 35 
Exception handling, 278 
Extension, 269 
Forms, 261, 269 
Glue abstractions, 262 
Hyper/JTM, 309 
Hypermodules, 307 
Hyperslices, 305 
Hyperspaces, 293, 302, 354 
Inheritance and aggregations, 36 
Interaction styles 

distributed asynchronous collections. See 
Distributed Asynchronous Collections 

distributed asynchronous queues, 189 
message queuing, 176, 180, 189 
messaging abstractions, 177 
mixing push and pull, 181 
publish-subscribe, 176, 178 
pull-style, 176 
push model, 176 
subject-based, 176 
topic-based publish-subscribe, 179, 185 

Interface declarations and type checking, 35 
Invasive modification, 294 
Java, 265 
Logic Meta Programming, 209, 212 

aspect-oriented programming, 215 
components, 220 
software architecture, 218 

Message passing, 36 
Middleware, 199 
Middleware systems, 30 

obstacles, 31 
Multiple views, 360 

view extension, 364 
view partitioning, 362 

Obstacles in design 
application generator related, 41 
arbitrary composition, 42, 46, 55 
component integration, 329 
composition anomaly, 358. 
composition, 31, 55 
composition vs. RT specifications, 52, 55 
composition vs. synchronization, 44, 55, 

367 

concurrency and synchronization, 43 
constraint system, 45 
control system, 46 
crosscutting, 368 
decomposition, 31, 55 
distributed system, 48 
domain independent, 34 
excessive type declarations, 35, 55 
fixed message passing semantics, 36, 43, 

49,55 
history sensitive behavior, 365 
identification using domain analysis, 32 
inheritance anomaly, 358 
lack of expression power, 31, 56 
lack of support for coordinated behavior, 

46,48,50,52,56 
lack of support for dynamic composition, 

39,52,56 
lack of support for reflection, 40, 48, 49, 

50,51,56 
multiple views, 36, 52, 56, 358, 360, 376 
real-time system, 51 
sharing behavior with state, 39, 56 
software architecture, 23 
unmatched system functions, 39, 46, 49, 

50,51,56 
Perl, 288 
Piccola, 261 
Pict, 287 
Pluggable composite adapter, 325, 335 
Posix,288 
Process performance, 100 
Product 

creation process, 100 
intrinsic quality, 100 
life-cycle, 100 
performance, 100 
quality, 100 

Product family. See Product line 
Product line, 75, 99, 108 

engineering principles, 102, III 
Projection, 269 
Python, 287 
Readers and writers, 288 
Real-time, 51 
Reflection, 40 

open questions, 40 
Scopes, 274 
Scripting languages, 262 



www.manaraa.com

INDEX 

Scripts, 261, 262 
Separation of concerns, 70, 262, 293, 357 

concern space of units, 302 
concern specifications, 304 
multi-dimensional, 293, 295 
tyranny of the dominant decomposition, 

294,299 
Services, 270 
Smalltalk, 288 
Software architecture, 3, 59, 99, 143, 175, 

207 
activities, 65 
analysis, 68 
application family engineering, 110 
application system engineering, 111 
architectural styles, 59, 62, 79, 261, 262 
architecture centric, 104 
artifact -driven design, 10 
as a concept, 7 
component system engineering, 110 
component-based, 74, 103,327 
composability, 75 
constraints, 164 
definitions, 4, 61, 105 
dependability, 60 
dependent independence, 104 
design approaches, 8 
design example 

atomic transactions, 149 
car navigation system, 85 
consumer electronics, 129 
medical imaging, 122 

design for adaptability, 228 
design for change, 109 
design for quality, 228 
design method, 81, 112, 146 
design space, 70, 162,228, 234 
design using OAD, 10 
design using OMT, 10 
design using Unified Process, 13 
dimensions, 94 
documentation, 127, 135 
domain analysis, 102, 106, 113, 138, 148, 

230 
domain specific design, 19 
domain-driven design, 17 
emergent properties, 76 

end-to-end constraints, 67 
evolution, 126, 135 
hardware abstraction, 106 
integral quality, 103 

385 

interaction styles. See Interaction styles 
interfaces, 78 
message oriented, 176 
meta model, 8 
motivation, 4, 63 
non-functional constraints, 67 
overview of the approaches, 22 
overview of the design problems, 23, 60 
pipes and filters, 262 
platform engineering processes, 111 
problem solving, 145 
problems of artifact-driven design, 12 
problems of domain driven design, 20 
problems of use-case driven design, 15 
product line, 18,75,99,108,137,310 
requirement analysis, 151 
resource requirements, 79 
solution domain, 106, 148, 154 
specification, 165 
stakeholders, 73 
synthesis based, 143 
technical problem analysis, 152 
use-case driven design, 13 
value at low cost, 107 
verification, 121, 128, 136 
views, 61, 73 
X -abilities, 60 

Software quality, 228 
adaptability, 228 
balancing adaptability and performance 

factors, 247 
design for adaptability, 228, 232 
design for time performance, 244 

Static context, 277 
Subject-oriented programming, 319 
Superimposition, 374 
Synbad, 144, 151 
Synchronizing design and implementation, 

210 
Synthesis, 145 
System behavior, 64 
System interface and layering, 39 
Wiring, 264 



<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Gray Gamma 2.2)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.3

  /CompressObjects /Off

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Perceptual

  /DetectBlends true

  /DetectCurves 0.1000

  /ColorConversionStrategy /sRGB

  /DoThumbnails true

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams true

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts false

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 150

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 150

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 150

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 150

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 600

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (None)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<

    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

  >>

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [595.276 841.890]

>> setpagedevice





